Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob A. Tennessen is active.

Publication


Featured researches published by Jacob A. Tennessen.


Science | 2012

Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes

Jacob A. Tennessen; Abigail W. Bigham; Timothy D. O'Connor; Wenqing Fu; Eimear E. Kenny; Simon Gravel; Sean McGee; Ron Do; Xiaoming Liu; Goo Jun; Hyun Min Kang; Daniel M. Jordan; Suzanne M. Leal; Stacey Gabriel; Mark J. Rieder; Gonçalo R. Abecasis; David Altshuler; Deborah A. Nickerson; Eric Boerwinkle; Shamil R. Sunyaev; Carlos Bustamante; Michael J. Bamshad; Joshua M. Akey

A Deep Look Into Our Genes Recent debates have focused on the degree of genetic variation and its impact upon health at the genomic level in humans (see the Perspective by Casals and Bertranpetit). Tennessen et al. (p. 64, published online 17 May), looking at all of the protein-coding genes in the human genome, and Nelson et al. (p. 100, published online 17 May), looking at genes that encode drug targets, address this question through deep sequencing efforts on samples from multiple individuals. The findings suggest that most human variation is rare, not shared between populations, and that rare variants are likely to play a role in human health. Most functionally consequential variants in protein-coding genes are rare and, thus, difficult to find. As a first step toward understanding how rare variants contribute to risk for complex diseases, we sequenced 15,585 human protein-coding genes to an average median depth of 111× in 2440 individuals of European (n = 1351) and African (n = 1088) ancestry. We identified over 500,000 single-nucleotide variants (SNVs), the majority of which were rare (86% with a minor allele frequency less than 0.5%), previously unknown (82%), and population-specific (82%). On average, 2.3% of the 13,595 SNVs each person carried were predicted to affect protein function of ~313 genes per genome, and ~95.7% of SNVs predicted to be functionally important were rare. This excess of rare functional variants is due to the combined effects of explosive, recent accelerated population growth and weak purifying selection. Furthermore, we show that large sample sizes will be required to associate rare variants with complex traits.


Journal of Evolutionary Biology | 2005

Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection.

Jacob A. Tennessen

An increasing number of studies in both vertebrates and invertebrates show that the evolution of antimicrobial peptides is driven by positive selection. Because these diverse molecules show potential for therapeutic applications, they are currently the targets of much structural and functional research, providing extensive background data for evolutionary studies. In this paper, patterns of molecular evolution in antimicrobial peptide genes are reviewed. Evidence for positive selection on antimicrobial peptides includes an excess of nonsynonymous nucleotide substitutions, an excess of charge‐changing amino acid substitutions, nonneutral patterns of allelic variation, and functional assays in vivo and in vitro that show improved antimicrobial effects for derived sequence variants. Positive selection on antimicrobial peptides may be as common as, but perhaps weaker than, selection on the best‐known example of adaptively evolving immunity genes, the major histocompatibility complex. Thus, antimicrobial peptides present a useful and underutilized model for the study of adaptive molecular evolution.


Genome Biology and Evolution | 2014

Evolutionary Origins and Dynamics of Octoploid Strawberry Subgenomes Revealed by Dense Targeted Capture Linkage Maps

Jacob A. Tennessen; Rajanikanth Govindarajulu; Tia-Lynn Ashman; Aaron Liston

Whole-genome duplications are radical evolutionary events that have driven speciation and adaptation in many taxa. Higher-order polyploids have complex histories often including interspecific hybridization and dynamic genomic changes. This chromosomal reshuffling is poorly understood for most polyploid species, despite their evolutionary and agricultural importance, due to the challenge of distinguishing homologous sequences from each other. Here, we use dense linkage maps generated with targeted sequence capture to improve the diploid strawberry (Fragaria vesca) reference genome and to disentangle the subgenomes of the wild octoploid progenitors of cultivated strawberry, Fragaria virginiana and Fragaria chiloensis. Our novel approach, POLiMAPS (Phylogenetics Of Linkage-Map-Anchored Polyploid Subgenomes), leverages sequence reads to associate informative interhomeolog phylogenetic markers with linkage groups and reference genome positions. In contrast to a widely accepted model, we find that one of the four subgenomes originates with the diploid cytoplasm donor F. vesca, one with the diploid Fragaria iinumae, and two with an unknown ancestor close to F. iinumae. Extensive unidirectional introgression has converted F. iinumae-like subgenomes to be more F. vesca-like, but never the reverse, due either to homoploid hybridization in the F. iinumae-like diploid ancestors or else strong selection spreading F. vesca-like sequence among subgenomes through homeologous exchange. In addition, divergence between homeologous chromosomes has been substantially augmented by interchromosomal rearrangements. Our phylogenetic approach reveals novel aspects of the complicated web of genetic exchanges that occur during polyploid evolution and suggests a path forward for unraveling other agriculturally and ecologically important polyploid genomes.


Developmental and Comparative Immunology | 2009

Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens.

Jacob A. Tennessen; Douglas C. Woodhams; Pierre Chaurand; Laura K. Reinert; Dean Billheimer; Yu Shyr; Richard M. Caprioli; Michael S. Blouin; Louise A. Rollins-Smith

The northern leopard frog (Rana pipiens or Lithobates pipiens) is historically found in most of the provinces of Canada and the northern and southwest states of the United States. In the last 50 years, populations have suffered significant losses, especially in the western regions of the species range. Using a peptidomics approach, we show that the pattern of expressed antimicrobial skin peptides of frogs from three geographically separated populations are distinct, and we report the presence of four peptides (brevinin-1Pg, brevinin-1Pl, ranatuerin-2Pb, and ranatuerin-2Pc) that have not previously been found in skin secretions. The differences in expressed peptides reflect differences in the distribution of alleles for the newly described Brevinin1.1 locus in the three populations. When enriched peptide mixtures were tested for their ability to inhibit growth of the pathogenic amphibian chytrid (Batrachochytrium dendrobatidis), peptides from Minnesota or Vermont frogs were more effective that peptides from Michigan frogs. Four of the purified peptides were tested for their ability to inhibit growth of two bacterial pathogens (Aeromonas hydrophila and Staphylococcus epidermidis) and B. dendrobatidis. Three of the four were effective inhibitors of B. dendrobatidis and S. epidermidis, but none inhibited A. hydrophila. We interpret these differences in expression and activity of antimicrobial peptides as evidence to suggest that each population may have been selected to express a suite of peptides that reflects current and past encounters with skin microbes.


Journal of Molecular Evolution | 2007

Selection for Antimicrobial Peptide Diversity in Frogs Leads to Gene Duplication and Low Allelic Variation

Jacob A. Tennessen; Michael S. Blouin

Antimicrobial peptides are highly diverse pathogen-killing molecules. In many taxa, their evolution is characterized by positive selection and frequent gene duplication. It has been proposed that genes encoding antimicrobial peptides might be subject to balancing selection and/or an enhanced mutation rate, but these hypotheses have not been well evaluated because allelic variation has rarely been studied at antimicrobial peptide loci. We present an evolutionary analysis of novel antimicrobial peptide genes from leopard frogs, Rana. Our results demonstrate that a single genome contains multiple homologous copies, among which there is an excess of nonsynonymous nucleotide site divergence relative to that expected from synonymous site divergence. Thus, we confirm the trends of recurrent duplication and positive selection. Allelic variation is quite low relative to interspecies divergence, indicating a recent positive selective sweep with no evidence of balancing selection. Repeated gene duplication, rather than a balanced maintenance of divergent allelic variants at individual loci, appears to be how frogs have responded to selection for a diverse suite of antimicrobial peptides. Our data also support a pattern of enhanced synonymous site substitution in the mature peptide region of the gene, but we cannot conclude that this is due to an elevated mutation rate.


Molecular Ecology | 2003

Early male reproductive advantage, multiple paternity and sperm storage in an amphibian aggregate breeder

Jacob A. Tennessen; Kelly R. Zamudio

We tested whether the order in which males encounter females affects reproductive fitness in spotted salamanders (Ambystoma maculatum). Using mating chambers in the field, we allowed one male access to a female before a second male. We then used four microsatellite markers in paternity analyses of the resulting larvae. First males sired a significantly larger number of offspring than second males, suggesting that male reproductive success is greatly enhanced by early arrival at breeding ponds. Multiple paternity was common among clutches, and frequently larvae were assigned to unidentified males that had not been in the chambers. Sperm from these males had either been stored by females for a year or obtained more recently at other breeding sites.


G3: Genes, Genomes, Genetics | 2013

Targeted Sequence Capture Provides Insight into Genome Structure and Genetics of Male Sterility in a Gynodioecious Diploid Strawberry, Fragaria vesca ssp. bracteata (Rosaceae)

Jacob A. Tennessen; Rajanikanth Govindarajulu; Aaron Liston; Tia-Lynn Ashman

Gynodioecy is a sexual system wherein females coexist with hermaphrodites. It is of interest not only because male-sterile plants are advantageous in plant breeding but also because it can be a crucial step in the evolutionary transition to entirely separate sexes (dioecy) from a hermaphroditic ancestor. The gynodioecious diploid wild strawberry, Fragaria vesca ssp. bracteata (Rosaceae), is a member of a clade with both dioecious and cultivated species, making it an ideal model in which to study the genetics of male sterility. To create a genetic map of F. v. ssp. bracteata, we identified informative polymorphisms from genomic sequencing (3−5x coverage) of two outbred plants from the same population. Using targeted enrichment, we sequenced 200 bp surrounding each of 6575 polymorphisms in 48 F1 offspring, yielding genotypes at 98% of targeted sites with mean coverage >100x, plus more than 600-kb high-coverage nontargeted sequence. With the resulting linkage map of 7802 stringently filtered markers (5417 targeted), we assessed recombination rates and genomic incongruities. Consistent with past work in strawberries, male sterility is dominant, segregates 1:1, and maps to a single location in the female. Further mapping an additional 55 offspring places male sterility in a gene-dense, 338-kb region of chromosome 4. The region is not syntenic with the sex-determining regions in the closely related octoploids, F. chiloensis and F. virginiana, suggesting either independent origins or translocation. The 57 genes in this region do not include protein families known to control male sterility and thus suggest alternate mechanisms for the suppression of male function.


PLOS Genetics | 2011

Parallel Adaptive Divergence among Geographically Diverse Human Populations

Jacob A. Tennessen; Joshua M. Akey

Few genetic differences between human populations conform to the classic model of positive selection, in which a newly arisen mutation rapidly approaches fixation in one lineage, suggesting that adaptation more commonly occurs via moderate changes in standing variation at many loci. Detecting and characterizing this type of complex selection requires integrating individually ambiguous signatures across genomically and geographically extensive data. Here, we develop a novel approach to test the hypothesis that selection has favored modest divergence at particular loci multiple times in independent human populations. We find an excess of SNPs showing non-neutral parallel divergence, enriched for genic and nonsynonymous polymorphisms in genes encompassing diverse and often disease related functions. Repeated parallel evolution in the same direction suggests common selective pressures in disparate habitats. We test our method with extensive coalescent simulations and show that it is robust to a wide range of demographic events. Our results demonstrate phylogenetically orthogonal patterns of local adaptation caused by subtle shifts at many widespread polymorphisms that likely underlie substantial phenotypic diversity.


Bioinformatics | 2013

Bayesian parentage analysis with systematic accountability of genotyping error, missing data and false matching

Mark R. Christie; Jacob A. Tennessen; Michael S. Blouin

MOTIVATION The goal of any parentage analysis is to identify as many parent-offspring relationships as possible, while minimizing incorrect assignments. Existing methods can achieve these ends, but they require additional information in the form of demographic data, thousands of markers and/or estimates of genotyping error rates. For many non-model systems, it is simply not practical, cost-effective or logistically feasible to obtain this information. Here, we develop a Bayesian parentage method that only requires the sampled genotypes to account for genotyping error, missing data and false matches. RESULTS Extensive testing with microsatellite and SNP datasets reveals that our Bayesian parentage method reliably controls for the number of false assignments, irrespective of the genotyping error rate. When the number of loci is limiting, our approach maximizes the number of correct assignments by accounting for the frequencies of shared alleles. Comparisons with exclusion and likelihood-based methods on an empirical salmon dataset revealed that our Bayesian method had the highest ratio of correct to incorrect assignments.


PLOS Genetics | 2015

Hyperdiverse Gene Cluster in Snail Host Conveys Resistance to Human Schistosome Parasites

Jacob A. Tennessen; André Théron; Melanie L. Marine; Jan-Ying Yeh; Anne Rognon; Michael S. Blouin

Schistosomiasis, a neglected global pandemic, may be curtailed by blocking transmission of the parasite via its intermediate hosts, aquatic snails. Elucidating the genetic basis of snail-schistosome interaction is a key to this strategy. Here we map a natural parasite-resistance polymorphism from a Caribbean population of the snail Biomphalaria glabrata. In independent experimental evolution lines, RAD genotyping shows that the same genomic region responds to selection for resistance to the parasite Schistosoma mansoni. A dominant allele in this region conveys an 8-fold decrease in the odds of infection. Fine-mapping and RNA-Seq characterization reveal a <1Mb region, the Guadeloupe Resistance Complex (GRC), with 15 coding genes. Seven genes are single-pass transmembrane proteins with putative immunological roles, most of which show strikingly high nonsynonymous divergence (5-10%) among alleles. High linkage disequilibrium among three intermediate-frequency (>25%) haplotypes across the GRC, a significantly non-neutral pattern, suggests that balancing selection maintains diversity at the GRC. Thus, the GRC resembles immune gene complexes seen in other taxa and is likely involved in parasite recognition. The GRC is a potential target for controlling transmission of schistosomiasis, including via genetic manipulation of snails.

Collaboration


Dive into the Jacob A. Tennessen's collaboration.

Top Co-Authors

Avatar

Aaron Liston

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Na Wei

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Joshua M. Akey

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan-Ying Yeh

Oregon State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge