Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob Almagro-Garcia is active.

Publication


Featured researches published by Jacob Almagro-Garcia.


Nature Genetics | 2013

Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

Olivo Miotto; Jacob Almagro-Garcia; Magnus Manske; Bronwyn MacInnis; Susana Campino; Kirk A. Rockett; Chanaki Amaratunga; Pharath Lim; Seila Suon; Sokunthea Sreng; Jennifer M. Anderson; Socheat Duong; Chea Nguon; Char Meng Chuor; David L. Saunders; Youry Se; Chantap Lon; Mark M. Fukuda; Lucas Amenga-Etego; Abraham Hodgson; Victor Asoala; Mallika Imwong; Shannon Takala-Harrison; François Nosten; Xin-Zhuan Su; Pascal Ringwald; Frédéric Ariey; Christiane Dolecek; Tran Tinh Hien; Maciej F. Boni

We describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalog of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in transporter proteins and DNA mismatch repair proteins. These data provide a population-level genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist in its elimination.


Nature | 2012

Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

Magnus Manske; Olivo Miotto; Susana Campino; Sarah Auburn; Jacob Almagro-Garcia; Gareth Maslen; Jack O’Brien; Abdoulaye Djimde; Ogobara K. Doumbo; Issaka Zongo; Jean-Bosco Ouédraogo; Pascal Michon; Ivo Mueller; Peter Siba; Alexis Nzila; Steffen Borrmann; Steven M. Kiara; Kevin Marsh; Hongying Jiang; Xin-Zhuan Su; Chanaki Amaratunga; Rick M. Fairhurst; Duong Socheat; François Nosten; Mallika Imwong; Nicholas J. White; Mandy Sanders; Elisa Anastasi; Dan Alcock; Eleanor Drury

Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.


Nature Genetics | 2015

Genetic architecture of artemisinin-resistant Plasmodium falciparum

Olivo Miotto; Roberto Amato; Elizabeth A. Ashley; Bronwyn MacInnis; Jacob Almagro-Garcia; Chanaki Amaratunga; Pharath Lim; Daniel Mead; Samuel O. Oyola; Mehul Dhorda; Mallika Imwong; Charles J. Woodrow; Magnus Manske; Jim Stalker; Eleanor Drury; Susana Campino; Lucas Amenga-Etego; Thuy-Nhien Nguyen Thanh; Hien Tinh Tran; Pascal Ringwald; Delia Bethell; François Nosten; Aung Pyae Phyo; Sasithon Pukrittayakamee; Kesinee Chotivanich; Char Meng Chuor; Chea Nguon; Seila Suon; Sokunthea Sreng; Paul N. Newton

We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population.


eLife | 2016

Genomic epidemiology of artemisinin resistant malaria.

A. Amato; Olivo Miotto; Charles J. Woodrow; Jacob Almagro-Garcia; Ipsita Sinha; Susana Campino; Daniel Mead; Eleanor Drury; Mihir Kekre; Mandy Sanders; Alfred Amambua-Ngwa; Chanaki Amaratunga; Lucas Amenga-Etego; V. Andrianaranjaka; Tobias O. Apinjoh; Elizabeth A. Ashley; Sarah Auburn; Gordon A. Awandare; V. Baraka; Alyssa E. Barry; Maciej F. Boni; Steffen Borrmann; Teun Bousema; OraLee H. Branch; Peter C. Bull; Kesinee Chotivanich; David J. Conway; Alister Craig; Nicholas P. J. Day; A. Djimdé

The current epidemic of artemisinin resistant Plasmodium falciparum in Southeast Asia is the result of a soft selective sweep involving at least 20 independent kelch13 mutations. In a large global survey, we find that kelch13 mutations which cause resistance in Southeast Asia are present at low frequency in Africa. We show that African kelch13 mutations have originated locally, and that kelch13 shows a normal variation pattern relative to other genes in Africa, whereas in Southeast Asia there is a great excess of non-synonymous mutations, many of which cause radical amino-acid changes. Thus, kelch13 is not currently undergoing strong selection in Africa, despite a deep reservoir of variations that could potentially allow resistance to emerge rapidly. The practical implications are that public health surveillance for artemisinin resistance should not rely on kelch13 data alone, and interventions to prevent resistance must account for local evolutionary conditions, shown by genomic epidemiology to differ greatly between geographical regions.


Lancet Infectious Diseases | 2017

Genetic markers associated with dihydroartemisinin–piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype–phenotype association study

Roberto Amato; Pharath Lim; Olivo Miotto; Chanaki Amaratunga; Dalin Dek; Richard D. Pearson; Jacob Almagro-Garcia; Aaron T. Neal; Sokunthea Sreng; Seila Suon; Eleanor Drury; Dushyanth Jyothi; Jim Stalker; Dominic P. Kwiatkowski; Rick M. Fairhurst

BACKGROUND As the prevalence of artemisinin-resistant Plasmodium falciparum malaria increases in the Greater Mekong subregion, emerging resistance to partner drugs in artemisinin combination therapies seriously threatens global efforts to treat and eliminate this disease. Molecular markers that predict failure of artemisinin combination therapy are urgently needed to monitor the spread of partner drug resistance, and to recommend alternative treatments in southeast Asia and beyond. METHODS We did a genome-wide association study of 297 P falciparum isolates from Cambodia to investigate the relationship of 11 630 exonic single-nucleotide polymorphisms (SNPs) and 43 copy number variations (CNVs) with in-vitro piperaquine 50% inhibitory concentrations (IC50s), and tested whether these genetic variants are markers of treatment failure with dihydroartemisinin-piperaquine. We then did a survival analysis of 133 patients to determine whether candidate molecular markers predicted parasite recrudescence following dihydroartemisinin-piperaquine treatment. FINDINGS Piperaquine IC50s increased significantly from 2011 to 2013 in three Cambodian provinces (2011 vs 2013 median IC50s: 20·0 nmol/L [IQR 13·7-29·0] vs 39·2 nmol/L [32·8-48·1] for Ratanakiri, 19·3 nmol/L [15·1-26·2] vs 66·2 nmol/L [49·9-83·0] for Preah Vihear, and 19·6 nmol/L [11·9-33·9] vs 81·1 nmol/L [61·3-113·1] for Pursat; all p≤10-3; Kruskal-Wallis test). Genome-wide analysis of SNPs identified a chromosome 13 region that associates with raised piperaquine IC50s. A non-synonymous SNP (encoding a Glu415Gly substitution) in this region, within a gene encoding an exonuclease, associates with parasite recrudescence following dihydroartemisinin-piperaquine treatment. Genome-wide analysis of CNVs revealed that a single copy of the mdr1 gene on chromosome 5 and a novel amplification of the plasmepsin 2 and plasmepsin 3 genes on chromosome 14 also associate with raised piperaquine IC50s. After adjusting for covariates, both exo-E415G and plasmepsin 2-3 markers significantly associate (p=3·0 × 10-8 and p=1·7 × 10-7, respectively) with decreased treatment efficacy (survival rates 0·38 [95% CI 0·25-0·51] and 0·41 [0·28-0·53], respectively). INTERPRETATION The exo-E415G SNP and plasmepsin 2-3 amplification are markers of piperaquine resistance and dihydroartemisinin-piperaquine failures in Cambodia, and can help monitor the spread of these phenotypes into other countries of the Greater Mekong subregion, and elucidate the mechanism of piperaquine resistance. Since plasmepsins are involved in the parasites haemoglobin-to-haemozoin conversion pathway, targeted by related antimalarials, plasmepsin 2-3 amplification probably mediates piperaquine resistance. FUNDING Intramural Research Program of the US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and UK Department for International Development.


Nature Genetics | 2016

Genomic analysis of local variation and recent evolution in Plasmodium vivax

Richard D. Pearson; Roberto Amato; Sarah Auburn; Olivo Miotto; Jacob Almagro-Garcia; Chanaki Amaratunga; Seila Suon; Sivanna Mao; Rintis Noviyanti; Hidayat Trimarsanto; Jutta Marfurt; Nicholas M. Anstey; Timothy William; Maciej F. Boni; Christiane Dolecek; Hien Tinh Tran; Nicholas J. White; Pascal Michon; Peter Siba; Livingstone Tavul; Gabrielle Harrison; Alyssa E. Barry; Ivo Mueller; Marcelo U. Ferreira; Nadira D. Karunaweera; Milijaona Randrianarivelojosia; Qi Gao; Christina Hubbart; Lee Hart; Ben Jeffery

The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.


Molecular Ecology Resources | 2017

treespace: Statistical exploration of landscapes of phylogenetic trees

Thibaut Jombart; Michelle Kendall; Jacob Almagro-Garcia; Caroline Colijn

The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low‐dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group‐specific consensus phylogenies. treespace also provides a user‐friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results.


Bioinformatics | 2009

SnoopCGH: software for visualizing comparative genomic hybridization data

Jacob Almagro-Garcia; Magnus Manske; Celine Carret; Susana Campino; Sarah Auburn; Bronwyn MacInnis; Gareth Maslen; Arnab Pain; Chris Newbold; Dominic P. Kwiatkowski; Taane G. Clark

Summary: Array-based comparative genomic hybridization (CGH) technology is used to discover and validate genomic structural variation, including copy number variants, insertions, deletions and other structural variants (SVs). The visualization and summarization of the array CGH data outputs, potentially across many samples, is an important process in the identification and analysis of SVs. We have developed a software tool for SV analysis using data from array CGH technologies, which is also amenable to short-read sequence data. Availability and implementation: SnoopCGH is written in java and is available from http://snoopcgh.sourceforge.net/ Contact: [email protected]; [email protected]


Lancet Infectious Diseases | 2018

Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study.

Roberto Amato; Richard D. Pearson; Jacob Almagro-Garcia; Chanaki Amaratunga; Pharath Lim; Seila Suon; Sokunthea Sreng; Eleanor Drury; Jim Stalker; Olivo Miotto; Rick M. Fairhurst; Dominic P. Kwiatkowski

Summary Background Antimalarial resistance is rapidly spreading across parts of southeast Asia where dihydroartemisinin–piperaquine is used as first-line treatment for Plasmodium falciparum malaria. The first published reports about resistance to antimalarial drugs came from western Cambodia in 2013. Here, we analyse genetic changes in the P falciparum population of western Cambodia in the 6 years before those reports. Methods We analysed genome sequence data on 1492 P falciparum samples from 11 locations across southeast Asia, including 464 samples collected in western Cambodia between 2007 and 2013. Different epidemiological origins of resistance were identified by haplotypic analysis of the kelch13 artemisinin resistance locus and the plasmepsin 2–3 piperaquine resistance locus. Findings We identified more than 30 independent origins of artemisinin resistance, of which the KEL1 lineage accounted for 140 (91%) of 154 parasites resistant to dihydroartemisinin–piperaquine. In 2008, KEL1 combined with PLA1, the major lineage associated with piperaquine resistance. By 2013, the KEL1/PLA1 co-lineage had reached a frequency of 63% (24/38) in western Cambodia and had spread to northern Cambodia. Interpretation The KEL1/PLA1 co-lineage emerged in the same year that dihydroartemisinin–piperaquine became the first-line antimalarial drug in western Cambodia and spread rapidly thereafter, displacing other artemisinin-resistant parasite lineages. These findings have important implications for management of the global health risk associated with the current outbreak of multidrug-resistant malaria in southeast Asia. Funding Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, UK Department for International Development, and the Intramural Research Program of the National Institute of Allergy and Infectious Diseases.


Bioinformatics | 2018

Deconvolution of multiple infections in Plasmodium falciparum from high throughput sequencing data.

Sha Joe Zhu; Jacob Almagro-Garcia; Gil McVean

Abstract Motivation The presence of multiple infecting strains of the malarial parasite Plasmodium falciparum affects key phenotypic traits, including drug resistance and risk of severe disease. Advances in protocols and sequencing technology have made it possible to obtain high-coverage genome-wide sequencing data from blood samples and blood spots taken in the field. However, analyzing and interpreting such data is challenging because of the high rate of multiple infections present. Results We have developed a statistical method and implementation for deconvolving multiple genome sequences present in an individual with mixed infections. The software package DEploid uses haplotype structure within a reference panel of clonal isolates as a prior for haplotypes present in a given sample. It estimates the number of strains, their relative proportions and the haplotypes presented in a sample, allowing researchers to study multiple infection in malaria with an unprecedented level of detail. Availability and implementation The open source implementation DEploid is freely available at https://github.com/mcveanlab/DEploid under the conditions of the GPLv3 license. An R version is available at https://github.com/mcveanlab/DEploid-r. Supplementary information Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Jacob Almagro-Garcia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chanaki Amaratunga

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleanor Drury

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Roberto Amato

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Dominic P. Kwiatkowski

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Magnus Manske

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Sarah Auburn

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. Pearson

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge