Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob E. Jessop is active.

Publication


Featured researches published by Jacob E. Jessop.


The Journal of Physiology | 2016

Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans

Gregory M. Blain; Tyler S. Mangum; Simranjit K. Sidhu; Joshua C. Weavil; Thomas J. Hureau; Jacob E. Jessop; Amber D. Bledsoe; Russell S. Richardson; Markus Amann

The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise‐induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ‐opioid receptor‐sensitive locomotor muscle afferents during a 5 km cycling time trial. The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural ‘drive’ to working locomotor muscle and limits the exercise‐induced intramuscular metabolic perturbation. Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance.


Clinical Neurophysiology | 2017

Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise

Simranjit K. Sidhu; Joshua C. Weavil; Tyler S. Mangum; Jacob E. Jessop; Russell S. Richardson; David E. Morgan; Markus Amann

OBJECTIVE To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. METHODS Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. RESULTS While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13±3% higher (P<0.05), resulting in a decrease in MEP/CMEP (P<0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (-53±3% vs. -39±3%; P<0.01), the reduction in voluntary muscle activation was smaller (-2±2% vs. -10±2%; P<0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13±3% and 25±6% in FENT (P<0.05). CONCLUSION During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. SIGNIFICANCE Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans.


The Journal of Physiology | 2018

Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise

Thomas J. Hureau; Joshua C. Weavil; Taylor S. Thurston; Ryan M. Broxterman; Ashley D. Nelson; Amber D. Bledsoe; Jacob E. Jessop; Russell S. Richardson; D. Walter Wray; Markus Amann

We investigated the contribution of group III/IV muscle afferents to carotid baroreflex resetting during electrically evoked (no central command) and voluntary (requiring central command) isometric knee extension exercise. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ‐opioid receptor‐sensitive group III/IV leg muscle afferent feedback. Spontaneous carotid baroreflex control was assessed by loading and unloading the carotid baroreceptors with a variable pressure neck chamber. Group III/IV muscle afferents did not influence spontaneous carotid baroreflex responsiveness at rest or during exercise. Afferent feedback accounted for at least 50% of the exercise‐induced increase in the carotid baroreflex blood pressure and heart rate operating points, adjustments that are critical for an appropriate cardiovascular response to exercise. These findings suggest that group III/IV muscle afferent feedback is, independent of central command, critical for the resetting of the carotid baroreflex blood pressure and heart rate operating points, but not for spontaneous baroreflex responsiveness.


Medicine and Science in Sports and Exercise | 2017

Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents

Ryan M. Broxterman; Gwenael Layec; Thomas J. Hureau; David E. Morgan; Amber D. Bledsoe; Jacob E. Jessop; Markus Amann; Russell S. Richardson

Purpose The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. Methods Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4−), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (31P-MRS). Results The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4−] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4−], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min−1·N−1). Conclusion Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4−, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.


Journal of Applied Physiology | 2017

Single passive leg movement assessment of vascular function: Contribution of nitric oxide

Ryan M. Broxterman; Joel D. Trinity; Jayson R. Gifford; Oh Sung Kwon; Andrew C. Kithas; Jay R. Hydren; Ashley D. Nelson; David E. Morgan; Jacob E. Jessop; Amber D. Bledsoe; Russell S. Richardson

Broxterman RM, Trinity JD, Gifford JR, Kwon OS, Kithas AC, Hydren JR, Nelson AD, Morgan DE, Jessop JE, Bledsoe AD, Richardson RS. Single passive leg movement assessment of vascular function: contribution of nitric oxide. J Appl Physiol 123: 1468-1476, 2017. First published August 31, 2017; doi:10.1152/japplphysiol.00533.2017.-The assessment of passive leg movement (PLM)-induced leg blood flow (LBF) and vascular conductance (LVC) is a novel approach to assess vascular function that has recently been simplified to only a single PLM (sPLM), thereby increasing the clinical utility of this technique. As the physiological mechanisms mediating the robust increase in LBF and LVC with sPLM are unknown, we tested the hypothesis that nitric oxide (NO) is a major contributor to the sPLM-induced LBF and LVC response. In nine healthy men, sPLM was performed with and without NO synthase inhibition by intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA). Doppler ultrasound and femoral arterial pressure were used to determine LBF and LVC, which were characterized by the peak change (ΔLBFpeak and ΔLVCpeak) and area under the curve (LBFAUC and LVCAUC). l-NMMA significantly attenuated ΔLBFpeak [492 ± 153 (l-NMMA) vs. 719 ± 238 (control) ml/min], LBFAUC [57 ± 34 (l NMMA) vs. 147 ± 63 (control) ml], ΔLVCpeak [4.7 ± 1.1 (l-NMMA) vs. 8.0 ± 3.0 (control) ml·min-1·mmHg-1], and LVCAUC [0.5 ± 0.3 (l-NMMA) vs. 1.6 ± 0.9 (control) ml/mmHg]. The magnitude of the NO contribution to LBF and LVC was significantly correlated with the magnitude of the control responses ( r = 0.94 for ΔLBFpeak, r = 0.85 for LBFAUC, r = 0.94 for ΔLVCpeak, and r = 0.95 for LVCAUC). These data establish that the sPLM-induced hyperemic and vasodilatory response is predominantly (~65%) NO-mediated. As such, sPLM appears to be a promising, simple, in vivo assessment of NO-mediated vascular function and NO bioavailability. NEW & NOTEWORTHY Passive leg movement (PLM), a novel assessment of vascular function, has been simplified to a single PLM (sPLM), thereby increasing the clinical utility of this technique. However, the role of nitric oxide (NO) in mediating the robust sPLM hemodynamic responses is unknown. This study revealed that sPLM induces a hyperemic and vasodilatory response that is predominantly NO-mediated and, as such, appears to be a promising simple, in vivo, clinical assessment of NO-mediated vascular function and, therefore, NO bioavailability.


The Journal of Physiology | 2018

Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective

Ryan M. Broxterman; Thomas J. Hureau; Gwenael Layec; David E. Morgan; Amber D. Bledsoe; Jacob E. Jessop; Markus Amann; Russell S. Richardson

This investigation assessed the influence of group III/IV muscle afferents on small muscle mass exercise performance from a skeletal muscle bioenergetics perspective. Group III/IV muscle afferent feedback was attenuated with lumbar intrathecal fentanyl during intermittent isometric single‐leg knee‐extensor all‐out exercise, while 31P‐MRS was used to assess skeletal muscle bioenergetics. Attenuation of group III/IV muscle afferent feedback improved exercise performance during the first minute of exercise, due to an increase in total ATP production with no change in the ATP cost of contraction. However, exercise performance was not altered during the remainder of the protocol, despite a sustained increase in total ATP production, due to an exacerbated ATP cost of contraction. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit of attenuating the muscle afferents is negated.


The Journal of Physiology | 2018

Fatigue‐related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise

Simranjit K. Sidhu; Joshua C. Weavil; Taylor S. Thurston; Dorothea S. Rosenberger; Jacob E. Jessop; Eivind Wang; Russell S. Richardson; Chris J. McNeil; Markus Amann

This study investigated the influence of group III/IV muscle afferents on corticospinal excitability during cycling exercise and focused on GABAB neuron‐mediated inhibition as a potential underlying mechanism. The study provides novel evidence to demonstrate that group III/IV muscle afferent feedback facilitates inhibitory intracortical neurons during whole body exercise. Firing of these interneurons probably contributes to the development of central fatigue during physical activity.


The International Journal of Neuropsychopharmacology | 2018

Propofol for Treatment-Resistant Depression: A Pilot Study

Brian J. Mickey; Andrea T. White; Anna M Arp; Kolby Leonardi; Marina M Torres; Adam L Larson; David H. Odell; Sara A Whittingham; Michael M Beck; Jacob E. Jessop; Derek Sakata; Lowry Bushnell; Matthew D Pierson; Daniela Solzbacher; E Jeremy Kendrick; Howard Weeks; Alan R. Light; Kathleen C. Light; Scott C Tadler

Abstract Background We hypothesized that propofol, a unique general anesthetic that engages N-methyl-D-aspartate and gamma-aminobutyric acid receptors, has antidepressant properties. This open-label trial was designed to collect preliminary data regarding the feasibility, tolerability, and efficacy of deep propofol anesthesia for treatment-resistant depression. Methods Ten participants with moderate-to-severe medication-resistant depression (age 18–45 years and otherwise healthy) each received a series of 10 propofol infusions. Propofol was dosed to strongly suppress electroencephalographic activity for 15 minutes. The primary depression outcome was the 24-item Hamilton Depression Rating Scale. Self-rated depression scores were compared with a group of 20 patients who received electroconvulsive therapy. Results Propofol treatments were well tolerated by all subjects. No serious adverse events occurred. Montreal Cognitive Assessment scores remained stable. Hamilton scores decreased by a mean of 20 points (range 0–45 points), corresponding to a mean 58% improvement from baseline (range 0–100%). Six of the 10 subjects met the criteria for response (>50% improvement). Self-rated depression improved similarly in the propofol group and electroconvulsive therapy group. Five of the 6 propofol responders remained well for at least 3 months. In posthoc analyses, electroencephalographic measures predicted clinical response to propofol. Conclusions These findings demonstrate that high-dose propofol treatment is feasible and well tolerated by individuals with treatment-resistant depression who are otherwise healthy. Propofol may trigger rapid, durable antidepressant effects similar to electroconvulsive therapy but with fewer side effects. Controlled studies are warranted to further evaluate propofol’s antidepressant efficacy and mechanisms of action. ClinicalTrials.gov: NCT02935647.


The Journal of Physiology | 2018

Fatigue-related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise: Intracortical inhibition: role of sensory muscle afferents

Simranjit K. Sidhu; Joshua C. Weavil; Taylor S. Thurston; Dorothea S. Rosenberger; Jacob E. Jessop; Eivind Wang; Russell S. Richardson; Chris J. McNeil; Markus Amann


The Journal of Physiology | 2018

Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise: Muscle afferent feedback effects on carotid baroreflex control

Thomas J. Hureau; Joshua C. Weavil; Taylor S. Thurston; Ryan M. Broxterman; Ashley D. Nelson; Amber D. Bledsoe; Jacob E. Jessop; Russell S. Richardson; D. Walter Wray; Markus Amann

Collaboration


Dive into the Jacob E. Jessop's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Hureau

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge