Jacob Haqq-Misra
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacob Haqq-Misra.
Astrobiology | 2008
Jacob Haqq-Misra; Shawn D. Domagal-Goldman; Patrick J. Kasting; James F. Kasting
Geological and biological evidence suggests that Earth was warm during most of its early history, despite the fainter young Sun. Upper bounds on the atmospheric CO2 concentration in the Late Archean/Paleoproterozoic (2.8-2.2 Ga) from paleosol data suggest that additional greenhouse gases must have been present. Methanogenic bacteria, which were arguably extant at that time, may have contributed to a high concentration of atmospheric CH4, and previous calculations had indicated that a CH4-CO2-H2O greenhouse could have produced warm Late Archean surface temperatures while still satisfying the paleosol constraints on pCO2. Here, we revisit this conclusion. Correction of an error in the CH4 absorption coefficients, combined with the predicted early onset of climatically cooling organic haze, suggest that the amount of greenhouse warming by CH4 was more limited and that pCO2 must therefore have been 0.03 bar, at or above the upper bound of the value obtained from paleosols. Enough warming from CH4 remained in the Archean, however, to explain why Earths climate cooled and became glacial when atmospheric O2 levels rose in the Paleoproterozoic. Our new model also shows that greenhouse warming by higher hydrocarbon gases, especially ethane (C2H6), may have helped to keep the Late Archean Earth warm.
The Astrophysical Journal | 2016
R. Kopparapu; Eric T. Wolf; Jacob Haqq-Misra; Jun Yang; James F. Kasting; Victoria S. Meadows; Ryan C. Terrien; Suvrath Mahadevan
Terrestrial planets at the inner edge of the habitable zone of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly-rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the habitable zone for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3-D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar cloud deck are sensitive to the precise rotation rate of the planet. Around mid-to-late M-dwarf stars with low metallicity, planetary rotation rates at the inner edge of the HZ become faster, and the inner edge of the habitable zone is farther away from the host stars than in previous GCM studies. For an Earth-sized planet, the dynamical regime of the substellar clouds begins to transition as the rotation rate approaches ~10 days. These faster rotation rates produce stronger zonal winds that encircle the planet and smear the substellar clouds around it, lowering the planetary albedo, and causing the onset of the water-vapor greenhouse climatic instability to occur at up to ~25% lower incident stellar fluxes than found in previous GCM studies. For mid-to-late M-dwarf stars with high metallicity and for mid-K to early-M stars, we agree with previous studies.
Environment Systems and Decisions | 2013
Seth D. Baum; Timothy M. Maher; Jacob Haqq-Misra
Perceived failure to reduce greenhouse gas emissions has prompted interest in avoiding the harms of climate change via geoengineering, that is, the intentional manipulation of Earth system processes. Perhaps the most promising geoengineering technique is stratospheric aerosol injection (SAI), which reflects incoming solar radiation, thereby lowering surface temperatures. This paper analyzes a scenario in which SAI brings great harm on its own. The scenario is based on the issue of SAI intermittency, in which aerosol injection is halted, sending temperatures rapidly back toward where they would have been without SAI. The rapid temperature increase could be quite damaging, which in turn creates a strong incentive to avoid intermittency. In the scenario, a catastrophic societal collapse eliminates society’s ability to continue SAI, despite the incentive. The collapse could be caused by a pandemic, nuclear war, or other global catastrophe. The ensuing intermittency hits a population that is already vulnerable from the initial collapse, making for a double catastrophe. While the outcomes of the double catastrophe are difficult to predict, plausible worst-case scenarios include human extinction. The decision to implement SAI is found to depend on whether global catastrophe is more likely from double catastrophe or from climate change alone. The SAI double catastrophe scenario also strengthens arguments for greenhouse gas emissions reductions and against SAI, as well as for building communities that could be self-sufficient during global catastrophes. Finally, the paper demonstrates the value of integrative, systems-based global catastrophic risk analysis.
Ethics, Policy and Environment | 2012
Nancy Tuana; Ryan L. Sriver; Toby Svoboda; Roman Olson; Peter J. Irvine; Jacob Haqq-Misra; Klaus Keller
Concerns about the risks of unmitigated greenhouse gas emissions are growing. At the same time, confidence that international policy agreements will succeed in considerably lowering anthropogenic greenhouse gas emissions is declining. Perhaps as a result, various geoengineering solutions are gaining attention and credibility as a way to manage climate change. Serious consideration is currently being given to proposals to cool the planet through solar-radiation management. Here we analyze how the unique and nontrivial risks of geoengineering strategies pose fundamental questions at the interface between science and ethics. To illustrate the importance of integrated ethical and scientific analysis, we define key open questions and outline a coupled scientific-ethical research agenda to analyze solar-radiation management geoengineering proposals. We identify nine key fields of coupled research including whether solar-radiation management can be tested, how quickly learning could occur, normative decisions embedded in how different climate trajectories are valued, and justice issues regarding distribution of the harms and benefits of geoengineering. To ensure that ethical analyses are coupled with scientific analyses of this form of geoengineering, we advocate that funding agencies recognize the essential nature of this coupled research by establishing an Ethical, Legal, and Social Implications program for solar-radiation management.
Acta Astronautica | 2011
Seth D. Baum; Jacob Haqq-Misra; Shawn D. Domagal-Goldman
While humanity has not yet observed any extraterrestrial intelligence (ETI), contact with ETI remains possible. Contact could occur through a broad range of scenarios that have varying consequences for humanity. However, many discussions of this question assume that contact will follow a particular scenario that derives from the hopes and fears of the author. In this paper, we analyze a broad range of contact scenarios in terms of whether contact with ETI would benefit or harm humanity. This type of broad analysis can help us prepare for actual contact with ETI even if the details of contact do not fully resemble any specific scenario.
Acta Astronautica | 2012
Jacob Haqq-Misra; R. Kopparapu
Abstract Extraterrestrial technology may exist in the Solar System without our knowledge. This is because the vastness of space, combined with our limited searches to date, implies that any remote unpiloted exploratory probes of extraterrestrial origin would likely remain unnoticed. Here we develop a probabilistic approach to quantify our certainty (or uncertainty) of the existence of such technology in the Solar System. We discuss some possible strategies for improving this uncertainty that include analysis of moon- and Mars-orbiting satellite data as well as continued exploration of the Solar System.
The Astrophysical Journal | 2017
Eric T. Wolf; Aomawa L. Shields; Ravi K. Kopparapu; Jacob Haqq-Misra; Owen B. Toon
Conventional definitions of habitability require abundant liquid surface water to exist continuously over geologic timescales. Water in each of its thermodynamic phases interacts with solar and thermal radiation and is the cause for strong climatic feedbacks. Thus, assessments of the habitable zone require models to include a complete treatment of the hydrological cycle over geologic time. Here, we use the Community Atmosphere Model from the National Center for Atmospheric Research to study the evolution of climate for an Earth-like planet at constant CO2, under a wide range of stellar fluxes from F-, G-, and K-dwarf main sequence stars. Around each star we find four stable climate states defined by mutually exclusive global mean surface temperatures (Ts); snowball (Ts 330 K). Each is separated by abrupt climatic transitions. Waterbelt, temperate, and cooler moist greenhouse climates can maintain open-ocean against both sea-ice albedo and hydrogen escape processes respectively, and thus constitute habitable worlds. We consider the warmest possible habitable planet as having Ts ~ 355 K, at which point diffusion limited water-loss could remove an Earth ocean in ~1 Gyr. Without long timescale regulation of non-condensable greenhouse species at Earth-like temperatures and pressures, such as CO2, habitability can be maintained for an upper limit of ~2.2, ~2.4 and ~4.7 Gyr around F-, G- and K-dwarf stars respectively due to main sequence brightening.
Astrobiology | 2012
Jacob Haqq-Misra
Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.
Monthly Notices of the Royal Astronomical Society | 2015
Jacob Haqq-Misra; R. Kopparapu
Earth-like planets within the liquid water habitable zone of M type stars may evolve into synchronous rotators. On these planets, the sub-stellar hemisphere experiences perpetual daylight while the opposing anti-stellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the anti-stellar side. Here we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the anti-stellar hemisphere. We also explore the persistence of atmospheric asymmetries between the northern and southern hemispheres, and we find that the direction of the meridional circulation (for rapidly rotating planets) or the direction of zonal wind (for slowly rotating planets) reverses on either side of the sub-stellar point. We show that the zonal circulation approaches a theoretical state similar to a Walker circulation only for slowly rotating planets, while rapidly rotating planets show a zonal circulation with the opposite direction. We find that a cross-polar circulation is present in all cases and provides an additional mechanism of mass and energy transport from the sub-stellar to anti-stellar point. Characterization of the atmospheres of synchronously rotating planets should include consideration of hemispheric differences in meridional circulation and examination of transport due to cross-polar flow.
International Journal of Astrobiology | 2018
Jacob Haqq-Misra; R. Kopparapu; Eric T. Wolf
M-dwarf stars are more abundant than G-dwarf stars, so our position as observers on a planet orbiting a G-dwarf raises questions about the suitability of other stellar types for supporting life. If we consider ourselves as typical, in the anthropic sense that our environment is probably a typical one for conscious observers, then we are led to the conclusion that planets orbiting in the habitable zone of G-dwarf stars should be the best place for conscious life to develop. But such a conclusion neglects the possibility that K-dwarfs or M-dwarfs could provide more numerous sites for life to develop, both now and in the future. In this paper we analyse this problem through Bayesian inference to demonstrate that our occurrence around a G-dwarf might be a slight statistical anomaly, but only the sort of chance event that we expect to occur regularly. Even if M-dwarfs provide more numerous habitable planets today and in the future, we still expect mid G- to early K-dwarfs stars to be the most likely place for observers like ourselves. This suggests that observers with similar cognitive capabilities as us are most likely to be found at the present time and place, rather than in the future or around much smaller stars.