Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob Kofoed is active.

Publication


Featured researches published by Jacob Kofoed.


Journal of Medicinal Chemistry | 2015

Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide.

Jesper Lau; Paw Bloch; Lauge Schäffer; Ingrid Pettersson; Jane Spetzler; Jacob Kofoed; Kjeld Madsen; Lotte Bjerre Knudsen; James N. McGuire; Dorte Bjerre Steensgaard; Holger Strauss; Dorte Xenia Gram; Sanne Møller Knudsen; Flemming Seier Nielsen; Peter Thygesen; Steffen Reedtz-Runge; Thomas Kruse

Liraglutide is an acylated glucagon-like peptide-1 (GLP-1) analogue that binds to serum albumin in vivo and is approved for once-daily treatment of diabetes as well as obesity. The aim of the present studies was to design a once weekly GLP-1 analogue by increasing albumin affinity and secure full stability against metabolic degradation. The fatty acid moiety and the linking chemistry to GLP-1 were the key features to secure high albumin affinity and GLP-1 receptor (GLP-1R) potency and in obtaining a prolonged exposure and action of the GLP-1 analogue. Semaglutide was selected as the optimal once weekly candidate. Semaglutide has two amino acid substitutions compared to human GLP-1 (Aib(8), Arg(34)) and is derivatized at lysine 26. The GLP-1R affinity of semaglutide (0.38 ± 0.06 nM) was three-fold decreased compared to liraglutide, whereas the albumin affinity was increased. The plasma half-life was 46.1 h in mini-pigs following i.v. administration, and semaglutide has an MRT of 63.6 h after s.c. dosing to mini-pigs. Semaglutide is currently in phase 3 clinical testing.


Bioorganic & Medicinal Chemistry Letters | 2003

Discovery of new peptide-Based catalysts for the direct asymmetric aldol reaction

Jacob Kofoed; John Nielsen; Jean-Louis Reymond

A series of oligo-peptide based catalysts were prepared using Fmoc solid-phase peptide synthesis. It was found that peptides with N-terminal proline residues catalyzed an aldol reaction yielding enantiomeric enriched product. Peptide H-Pro-Glu-Leu-Phe-OH catalyzed the reaction with good activity and moderate enantioselectivity (66% ee). Furthermore, it was shown that an acidic side chain and/or C-termini are essential to catalysis.


Organic and Biomolecular Chemistry | 2005

Prebiotic carbohydrate synthesis: zinc–proline catalyzes direct aqueous aldol reactions of α-hydroxy aldehydes and ketones

Jacob Kofoed; Jean-Louis Reymond; Tamis Darbre

Zn-proline catalyzed aldolisation of glycoladehyde gave mainly tetroses whereas in the cross-aldolisation of glycoladehyde and rac-glyceraldehyde, pentoses accounted for 60% of the sugars formed with 20% of ribose.


Chemical Communications | 2004

Zinc–proline catalyzed pathway for the formation of sugars

Jacob Kofoed; Miguel Machuqueiro; Jean-Louis Reymond; Tamis Darbre

Zn-proline catalyzes the aldolisation of unprotected glycolaldehyde in water to give tetroses and hexoses; threose (33% of the product mixture) was formed with 10% enantiomeric excess of the D-isomer.


Chemical Communications | 2010

Comparing dendritic with linear esterase peptides by screening SPOT arrays for catalysis.

Rasomoy Biswas; Noélie Maillard; Jacob Kofoed; Jean-Louis Reymond

Fluorescence screening of a 96-membered SPOT library of histidine containing dendritic and linear peptides revealed the remarkable esterolytic activity of short histidine oligomers that show catalytic proficiencies within one order of magnitude of histidine-containing esterase peptide dendrimers.


Peptides | 2016

Metabolism of peptide YY 3–36 in Göttingen mini-pig and rhesus monkey

Jørgen Olsen; Jacob Kofoed; Søren Østergaard; Birgitte S. Wulff; Flemming Seier Nielsen; Rasmus Jorgensen

Peptide YY 3-36-amide (PYY3-36) is a peptide hormone, which is known to decrease appetite and food-intake by activation of the Y2 receptor. The current studies were designed to identify the metabolites of PYY3-36 in mini-pig and rhesus monkey. Plasma samples were analyzed by high resolution LC-MS (and MS/MS) in order to unambiguously identify the metabolites of PYY3-36. In summary, the metabolism of PYY3-36 was similar in mini-pig and rhesus monkey. Several metabolites were identified and PYY3-34 was identified at the highest levels in plasma. In addition, mini-pigs were also dosed with PYY1-36-amide, PYY3-35, PYY3-34 and [N-methyl 34Q]-PYY3-36-amide in order to investigate the mechanisms by which PYY was metabolized. PYY3-35 was rapidly converted to PYY3-34 whereas dosing of PYY3-34 to mini-pigs only showed circulating degradation products at low levels, i.e., PYY3-34 was metabolically more stable than PYY3-36 and PYY3-35. [N-methyl 34Q]-PYY3-36-amide was hypothesized to be stable toward cleavage between 34Q and 35R and after i.v. administration to mini-pigs, one major cleavage product was identified as [N-methyl 34Q]-PYY3-35. Overall, this showed that cleavage between 35R and 36Y was possible as well as between 34Q and 35R (as shown for PYY3-35), which indicated that metabolism of PYY3-36 to PYY3-34 may be a two-step process. PYY1-36 was also dosed to mini-pigs, which showed that PYY1-36 was metabolized in the C-terminal as PYY3-36. The overall degradation pattern of PYY1-36 was more complex due to the simultaneous enzymatic degradation in the N-terminal to form PYY2-34/36 and PYY3-34/36. In vitro incubations with heparin stabilized plasma showed that PYY3-36 was degraded with a half-life of 175 min, whereas incubations with PYY3-35 (half-life of 6 min) showed a rapid formation of PYY3-34. In conclusion, the present studies showed that PYY3-36 underwent enzymatic degradation in the C-terminal part and that the major circulating metabolite was PYY3-34. Furthermore, it may be a sequential two-step process leading to the formation of PYY3-35 and subsequently the metabolically more stable PYY3-34.


Current Opinion in Chemical Biology | 2005

Dendrimers as artificial enzymes.

Jacob Kofoed; Jean-Louis Reymond


European Journal of Organic Chemistry | 2005

A Selective Direct Aldol Reaction in Aqueous Media Catalyzed byZinc–Proline

Ruben Fernandez-Lopez; Jacob Kofoed; Miguel Machuqueiro; Tamis Darbre


Chemical Communications | 2006

Dual mechanism of zinc-proline catalyzed aldol reactions in water

Jacob Kofoed; Tamis Darbre; Jean-Louis Reymond


Organic and Biomolecular Chemistry | 2006

Artificial aldolases from peptide dendrimer combinatorial libraries

Jacob Kofoed; Tamis Darbre; Jean-Louis Reymond

Collaboration


Dive into the Jacob Kofoed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge