Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob T. Jackson is active.

Publication


Featured researches published by Jacob T. Jackson.


Journal of Immunology | 2002

Rejection of Syngeneic Colon Carcinoma by CTLs Expressing Single-Chain Antibody Receptors Codelivering CD28 Costimulation

Nicole M. Haynes; Joseph A. Trapani; Michele W.L. Teng; Jacob T. Jackson; Loretta Cerruti; Stephen M. Jane; Michael H. Kershaw; Mark J. Smyth; Phillip K. Darcy

A new strategy to improve the therapeutic utility of redirected T cells for cancer involves the development of novel Ag-specific chimeric receptors capable of stimulating optimal and sustained T cell antitumor activity in vivo. Given that T cells require both primary and costimulatory signals for optimal activation and that many tumors do not express critical costimulatory ligands, modified single-chain Ab receptors have been engineered to codeliver CD28 costimulation. In this study, we have compared the antitumor potency of primary T lymphocytes expressing carcinoembryonic Ag (CEA)-reactive chimeric receptors that incorporate either TCR-zeta or CD28/TCR-zeta signaling. Although both receptor-transduced T cell effector populations demonstrated cytolysis of CEA(+) tumors in vitro, T cells expressing the single-chain variable fragment of Ig (scFv)-CD28-zeta chimera had a far greater capacity to control the growth of CEA(+) xenogeneic and syngeneic colon carcinomas in vivo. The observed enhanced antitumor activity of T cells expressing the scFv-CD28-zeta receptor was critically dependent on perforin and the production of IFN-gamma. Overall, this study has illustrated the ability of a chimeric scFv receptor capable of harnessing the signaling machinery of both TCR-zeta and CD28 to augment T cell immunity against tumors that have lost expression of both MHC/peptide and costimulatory ligands in vivo.


The EMBO Journal | 2011

Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages

Jacob T. Jackson; Yifang Hu; Ruijie Liu; Frederick Masson; Angela D'Amico; Sebastian Carotta; Annie Xin; Mary J Camilleri; Adele M. Mount; Axel Kallies; Li Wu; Gordon K. Smyth; Stephen L. Nutt; Gabrielle T. Belz

Dendritic cells (DCs) have critical roles in the induction of the adaptive immune response. The transcription factors Id2, Batf3 and Irf‐8 are required for many aspects of murine DC differentiation including development of CD8α+ and CD103+ DCs. How they regulate DC subset specification is not completely understood. Using an Id2‐GFP reporter system, we show that Id2 is broadly expressed in all cDC subsets with the highest expression in CD103+ and CD8α+ lineages. Notably, CD103+ DCs were the only DC able to constitutively cross‐present cell‐associated antigens in vitro. Irf‐8 deficiency affected loss of development of virtually all conventional DCs (cDCs) while Batf3 deficiency resulted in the development of Sirp‐α− DCs that had impaired survival. Exposure to GM‐CSF during differentiation induced expression of CD103 in Id2‐GFP+ DCs. It did not restore cross‐presenting capacity to Batf3−/− or CD103−Sirp‐α−DCs in vitro. Thus, Irf‐8 and Batf3 regulate distinct stages in DC differentiation during the development of cDCs. Genetic mapping DC subset differentiation using Id2‐GFP may have broad implications in understanding the interplay of DC subsets during protective and pathological immune responses.


Cell Death & Differentiation | 2004

Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux

Kellie M. Tainton; Mark J. Smyth; Jacob T. Jackson; Jane E. Tanner; Loretta Cerruti; Stephen M. Jane; Phillip K. Darcy; Ricky W. Johnstone

AbstractP-glycoprotein (P-gp) can induce multidrug resistance (MDR) through the ATP-dependent efflux of chemotherapeutic agents. We have previously shown that P-gp can inhibit nondrug apoptotic stimuli by suppressing the activation of caspases. To determine if this additional activity is functionally linked to ATP hydrolysis, we expressed wild-type and ATPase-mutant P-gp and showed that cells expressing mutant P-gp could not efflux chemotherapeutic drugs but remained relatively resistant to apoptosis. CEM lymphoma cells expressing mutant P-gp treated with vincristine showed a decrease in the fraction of cells with apoptotic morphology, cytochrome c release from the mitochondria and suppression of caspase activation, yet still accumulated in mitosis and showed a loss of clonogenic potential. The loss of clonogenicity in vincristine-treated cells expressing mutant P-gp was associated with accumulation of cells in mitosis and the presence of multinucleated cells consistent with mitotic catastrophe. The antiapoptotic effect of mutant P-gp was not affected by antibodies that inhibit the efflux function of the protein. These data are consistent with a dual activity model for P-gp-induced MDR involving both ATPase-dependent drug efflux and ATPase-independent inhibition of apoptosis. The structure–function analyses described herein provide novel insight into the mechanisms of action of P-gp in mediating MDR.


Journal of Experimental Medicine | 2004

The Functional Basis for Hemophagocytic Lymphohistiocytosis in a Patient with Co-inherited Missense Mutations in the Perforin ( PFN1 ) Gene

Ilia Voskoboinik; Marie-Claude Thia; Annette De Bono; Kylie A. Browne; Erika Cretney; Jacob T. Jackson; Phillip K. Darcy; Stephen M. Jane; Mark J. Smyth; Joseph A. Trapani

About 30% of cases of the autosomal recessive immunodeficiency disorder hemophagocytic lymphohistiocytosis are believed to be caused by inactivating mutations of the perforin gene. We expressed perforin in rat basophil leukemia cells to define the basis of perforin dysfunction associated with two mutations, R225W and G429E, inherited by a compound heterozygote patient. Whereas RBL cells expressing wild-type perforin (67 kD) efficiently killed Jurkat target cells to which they were conjugated, the substitution to tryptophan at position 225 resulted in expression of a truncated (∼45 kD) form of the protein, complete loss of cytotoxicity, and failure to traffic to rat basophil leukemia secretory granules. By contrast, G429E perforin was correctly processed, stored, and released, but the rat basophil leukemia cells possessed reduced cytotoxicity. The defective function of G429E perforin mapped downstream of exocytosis and was due to its reduced ability to bind lipid membranes in a calcium-dependent manner. This study elucidates the cellular basis for perforin dysfunctions in hemophagocytic lymphohistiocytosis and provides the means for studying structure–function relationships for lymphocyte perforin.


Journal of Immunology | 2008

Adoptive Transfer of Gene-Modified Primary NK Cells Can Specifically Inhibit Tumor Progression In Vivo

Hollie J. Pegram; Jacob T. Jackson; Mark J. Smyth; Michael H. Kershaw; Phillip K. Darcy

NK cells hold great potential for improving the immunotherapy of cancer. Nevertheless, tumor cells can effectively escape NK cell-mediated apoptosis through interaction of MHC molecules with NK cell inhibitory receptors. Thus, to harness NK cell effector function against tumors, we used Amaxa gene transfer technology to gene-modify primary mouse NK cells with a chimeric single-chain variable fragment (scFv) receptor specific for the human erbB2 tumor-associated Ag. The chimeric receptor was composed of the extracellular scFv anti-erbB2 Ab linked to the transmembrane and cytoplasmic CD28 and TCR-ζ signaling domains (scFv-CD28-ζ). In this study we demonstrated that mouse NK cells gene-modified with this chimera could specifically mediate enhanced killing of an erbB2+ MHC class I+ lymphoma in a perforin-dependent manner. Expression of the chimera did not interfere with NK cell-mediated cytotoxicity mediated by endogenous NK receptors. Furthermore, adoptive transfer of gene-modified NK cells significantly enhanced the survival of RAG mice bearing established i.p. RMA-erbB2+ lymphoma. In summary, these data suggest that use of genetically modified NK cells could broaden the scope of cancer immunotherapy for patients.


Cancer Gene Therapy | 2004

A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells.

Maria Moeller; Nicole M. Haynes; Joseph A. Trapani; Michele W.L. Teng; Jacob T. Jackson; Jane E. Tanner; Loretta Cerutti; Stephen M. Jane; Michael H. Kershaw; Mark J. Smyth; Phillip K. Darcy

T cells engineered to express single-chain antibody receptors that incorporate TCR-ζ and cluster designation (CD)28 signaling domains (scFv-α-erbB2-CD28-ζ) can be redirected in vivo to cancer cells that lack triggering costimulatory molecules. To assess the contribution of CD28 signaling to the function of the scFv-CD28-ζ receptor, we expressed a series of mutated scFv-CD28-ζ receptors directed against erbB2. Residues known to be critical for CD28 signaling were mutated from tyrosine to phenylalanine at position 170 or proline to alanine at positions 187 and 190. Primary mouse T cells expressing either of the mutant receptors demonstrated impaired cytokine (IFN-γ and GM-CSF) production and decreased proliferation after antigen ligation in vitro and decreased antitumor efficacy in vivo compared with T cells expressing the wild-type scFv-CD28-ζ receptor, suggesting a key signaling role for the CD28 component of the scFv-CD28-ζ receptor. Importantly, cell surface expression, binding capacity and cytolytic activity mediated by the scFv-CD28-ζ receptor were not diminished by either mutation. Overall, this study has definitively demonstrated a functional role for the CD28 component of the scFv-CD28-ζ receptor and has shown that incorporation of costimulatory activity in chimeric scFv receptors is a powerful approach for improving adoptive cancer immunotherapy.


Journal of Immunology | 2004

Gene-engineered T cells as a superior adjuvant therapy for metastatic cancer

Michael H. Kershaw; Jacob T. Jackson; Nicole M. Haynes; Michele W. L. Teng; Maria Moeller; Yoshihiro Hayakawa; Shayna Street; Rachel Cameron; Jane E. Tanner; Joseph A. Trapani; Mark J. Smyth; Phillip K. Darcy

The major limiting factor in the successful application of adjuvant therapy for metastatic disease is the lack of adjuvant specificity that leads to severe side effects. Reasoning that T cells of the immune system are highly specific, we generated tumor-specific T cells by genetic modification of mouse primary T cells with a chimeric receptor reactive with the human breast cancer-associated Ag erbB-2. These T cells killed breast cancer cells and secreted IFN-γ in an Ag-specific manner in vitro. We investigated their use against metastatic breast cancer in mice in an adjuvant setting, and compared their effectiveness with the commonly applied adjuvants doxorubicin, 5-fluorouracil, and herceptin. Mice were inoculated orthotopically with the human erbB-2-expressing spontaneously metastatic mouse breast cancer 4T1.2 in mammary tissue, and the primary tumor was surgically removed 8 days later. Significant metastatic disease was demonstrated in lung and liver at the time of surgery on day 8 with increased tumor burden at later time points. T cell adjuvant treatment of day 8 metastatic disease resulted in dramatic increases in survival of mice, and this survival was significantly greater than that afforded by either doxorubicin, 5-fluorouracil, or herceptin.


Blood | 2013

Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL.

Matthew P. McCormack; Benjamin James Shields; Jacob T. Jackson; Chayanica Nasa; Wei Shi; Nicholas J. Slater; Cedric Tremblay; Terence H. Rabbitts; David J. Curtis

Lmo2 is an oncogenic transcription factor that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL), including early T-cell precursor ALL (ETP-ALL) cases with poor prognosis. Lmo2 must be recruited to DNA by binding to the hematopoietic basic helix-loop-helix factors Scl/Tal1 or Lyl1. However, it is unknown which of these factors can mediate the leukemic activity of Lmo2. To address this, we have generated Lmo2-transgenic mice lacking either Scl or Lyl1 in the thymus. We show that although Scl is dispensable for Lmo2-driven leukemia, Lyl1 is critical for all oncogenic functions of Lmo2, including upregulation of a stem cell-like gene signature, aberrant self-renewal of thymocytes, and subsequent generation of T-cell leukemia. Lyl1 expression is restricted to preleukemic and leukemic stem cell populations in this model, providing a molecular explanation for the stage-specific expression of the Lmo2-induced gene expression program. Moreover, LMO2 and LYL1 are coexpressed in ETP-ALL patient samples, and LYL1 is required for growth of ETP-ALL cell lines. Thus, the LMO2-LYL1 interaction is a promising therapeutic target for inhibiting self-renewing cancer stem cells in T-ALL, including poor-prognosis ETP-ALL cases.


Genes & Development | 2016

Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a

Benjamin James Shields; Jacob T. Jackson; Donald Metcalf; Wei Shi; Qiutong Huang; Alexandra L. Garnham; Stefan P. Glaser; Dominik Beck; John E. Pimanda; Clifford W. Bogue; Gordon K. Smyth; Warren S. Alexander; Matthew P. McCormack

Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16(INK4a) and p19(ARF), which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal.


Blood | 2015

A crucial role for the homeodomain transcription factor Hhex in lymphopoiesis

Jacob T. Jackson; Chayanica Nasa; Wei Shi; Nicholas D. Huntington; Clifford W. Bogue; Warren S. Alexander; Matthew P. McCormack

The hematopoietically expressed homeobox gene, Hhex, is a transcription factor that is important for development of definitive hematopoietic stem cells (HSCs) and B cells, and that causes T-cell leukemia when overexpressed. Here, we have used an Hhex inducible knockout mouse model to study the role of Hhex in adult hematopoiesis. We found that loss of Hhex was tolerated in HSCs and myeloid lineages, but resulted in a progressive loss of B lymphocytes in the circulation. This was accompanied by a complete loss of B-cell progenitors in the bone marrow and of transitional B-cell subsets in the spleen. In addition, transplantation and in vitro culture experiments demonstrated an almost complete failure of Hhex-null HSCs to contribute to lymphoid lineages beyond the common lymphoid precursor stage, including T cells, B cells, NK cells, and dendritic cells. Gene expression analysis of Hhex-deleted progenitors demonstrated deregulated expression of a number of cell cycle regulators. Overexpression of one of these, cyclin D1, could rescue the B-cell developmental potential of Hhex-null lymphoid precursors. Thus, Hhex is a key regulator of early lymphoid development, functioning, at least in part, via regulation of the cell cycle.

Collaboration


Dive into the Jacob T. Jackson's collaboration.

Top Co-Authors

Avatar

Phillip K. Darcy

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Mark J. Smyth

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Trapani

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew P. McCormack

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nicole M. Haynes

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele W.L. Teng

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Moeller

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge