Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacobus A.W. Coetzer is active.

Publication


Featured researches published by Jacobus A.W. Coetzer.


Veterinary Parasitology | 2008

Development and evaluation of a real-time polymerase chain reaction test for the detection of Theileria parva infections in Cape buffalo (Syncerus caffer) and cattle.

Kgomotso P. Sibeko; Marinda C. Oosthuizen; Nicola E. Collins; Dirk Geysen; Natasha Rambritch; Abdalla A. Latif; Hennie T. Groeneveld; Frederick T. Potgieter; Jacobus A.W. Coetzer

Corridor disease, caused by the tick-borne protozoan parasite Theileria parva, is a controlled disease in South Africa. The Cape buffalo is the reservoir host and uninfected buffalo have become sought-after by the game industry in South Africa, particularly for introduction into Corridor disease-free areas. A real-time polymerase chain reaction (PCR) test for detection of T. parva DNA in buffalo and cattle was developed to improve the sensitivity and specificity of the official diagnostic test package in South Africa. Oligonucleotide primers and hybridization probes were designed based on the 18S ribosomal RNA (rRNA) gene. Amplification of control DNA using Theileria genus-specific primers resulted in detection of T. taurotragi and T. annulata, in addition to T. parva. A T. parva-specific forward primer was designed which eliminated amplification of all other Theileria species, except for Theileria sp. (buffalo); however only the T. parva product was detected by the T. parva-specific hybridization probe set. The real-time PCR assay requires less time to perform, is more sensitive than the other molecular assays previously used in T. parva diagnostics and can reliably detect the parasite in carrier animals with a piroplasm parasitaemia as low as 8.79 x 10(-4)%.


PLOS Neglected Tropical Diseases | 2013

Serological Evidence of Rift Valley Fever Virus Circulation in Sheep and Goats in Zambézia Province, Mozambique

José Fafetine; Luis Neves; Peter N. Thompson; Janusz T. Paweska; Victor P.M.G. Rutten; Jacobus A.W. Coetzer

Rift Valley fever (RVF) is endemic in most parts of Africa and has also been reported to occur in the Arabian Peninsula. It is responsible for significant morbidity and mortality, particularly in livestock, but also in humans. During the last two decades several outbreaks of RVF have been reported in countries in Southern Africa. In contrast to other countries, no clinical disease has been reported in Mozambique during this period. In a serological study conducted in 2007 in five districts of Zambézia Province, Mozambique, of a total of 654 small ruminants sampled (277 sheep and 377 goats), 35.8% of sheep sera and 21.2% of goat sera were positive for RVF virus (RVFV) antibodies in a virus neutralization test (VN) and in an IgG enzyme-linked immunosorbent assay (ELISA). In 2010, a cross-sectional survey was conducted in 313 sheep and 449 goats in two districts of the same province. This study revealed an overall seropositivity rate of 9.2% in sheep and 11.6% in goat and an increased likelihood of being seropositive in older animals (OR = 7.3; p<0.001) using an IgG ELISA. 29 out of 240 animals assessed for RVF specific IgM by ELISA were positive, suggesting recent exposure to RVFV. However, a longitudinal study carried out between September 2010 and April 2011 in a cohort of 125 of these animals (74 sheep and 51 goats) failed to demonstrate seroconversion. The results of the study indicate that RVFV circulates sub-clinically in domestic small ruminants in Zambézia Province.


PLOS ONE | 2014

Parasite Co-Infections and Their Impact on Survival of Indigenous Cattle

Samuel M. Thumbi; Barend Mark de Clare Bronsvoort; Elizabeth J. Poole; Henry K. Kiara; Philip G. Toye; Mary Ndila Mbole-Kariuki; Ilana Conradie; Amy Jennings; Ian Handel; Jacobus A.W. Coetzer; Johan Christian Abraham Steyl; Olivier Hanotte; Mark E. J. Woolhouse

In natural populations, individuals may be infected with multiple distinct pathogens at a time. These pathogens may act independently or interact with each other and the host through various mechanisms, with resultant varying outcomes on host health and survival. To study effects of pathogens and their interactions on host survival, we followed 548 zebu cattle during their first year of life, determining their infection and clinical status every 5 weeks. Using a combination of clinical signs observed before death, laboratory diagnostic test results, gross-lesions on post-mortem examination, histo-pathology results and survival analysis statistical techniques, cause-specific aetiology for each death case were determined, and effect of co-infections in observed mortality patterns. East Coast fever (ECF) caused by protozoan parasite Theileria parva and haemonchosis were the most important diseases associated with calf mortality, together accounting for over half (52%) of all deaths due to infectious diseases. Co-infection with Trypanosoma species increased the hazard for ECF death by 6 times (1.4–25; 95% CI). In addition, the hazard for ECF death was increased in the presence of Strongyle eggs, and this was burden dependent. An increase by 1000 Strongyle eggs per gram of faeces count was associated with a 1.5 times (1.4–1.6; 95% CI) increase in the hazard for ECF mortality. Deaths due to haemonchosis were burden dependent, with a 70% increase in hazard for death for every increase in strongyle eggs per gram count of 1000. These findings have important implications for disease control strategies, suggesting a need to consider co-infections in epidemiological studies as opposed to single-pathogen focus, and benefits of an integrated approach to helminths and East Coast fever disease control.


Experimental and Applied Acarology | 2013

Detection of lumpy skin disease virus in saliva of ticks fed on lumpy skin disease virus-infected cattle

Jimmy Clement Lubinga; Eeva Tuppurainen; Wilhelm Heinrich Stoltsz; K. Ebersohn; Jacobus A.W. Coetzer; Estelle Hildegard Venter

Lumpy skin disease is an economically important disease of cattle that is caused by the lumpy skin disease virus (LSDV), which belongs to the genus Capripoxvirus. It is endemic in Africa and outbreaks have also been reported in the Middle-East. Transmission has mostly been associated with blood-feeding insects but recently, the authors have demonstrated mechanical transmission by Rhipicephalus appendiculatus as well as mechanical/intrastadial and transstadial transmission by Amblyomma hebraeum. Saliva is the medium of transmission of pathogens transmitted by biting arthropods and, simultaneously, it potentiates infection in the vertebrate host. This study aimed to detect LSDV in saliva of A. hebraeum and R. appendiculatus adult ticks fed, as nymphs or as adults, on LSDV-infected animals, thereby also demonstrating transstadial or mechanical/intrastadial passage of the virus in these ticks. Saliva samples were tested for LSDV by real-time PCR and virus isolation. Supernatants obtained from virus isolation were further tested by real-time PCR to confirm that the cytopathic effects observed were due to LSDV. Lumpy skin disease virus was detected, for the first time, in saliva samples of both A. hebraeum and R. appendiculatus ticks. At the same time, mechanical/intrastadial and transstadial passage of the virus was demonstrated and confirmed in R. appendiculatus and A. hebraeum.


European Journal of Immunology | 2009

Low cross-reactivity of T-cell responses against lipids from Mycobacterium bovis and M. avium paratuberculosis during natural infection.

Ildiko Van Rhijn; Thi Kim Anh Nguyen; Anita Luise Michel; Dave Cooper; Marc Govaerts; Tan-Yun Cheng; Willem van Eden; D. Branch Moody; Jacobus A.W. Coetzer; Victor P.M.G. Rutten; Ad P. Koets

Although CD1 proteins are known to present mycobacterial lipid antigens to T cells, there is little understanding of the in vivo behavior of T cells restricted by CD1a, CD1b and CD1c, and the relative immunogenicity and immunodominance of individual lipids within the total array of lipids that comprise a bacterium. Because bovines express multiple CD1 proteins and are natural hosts of Mycobacterium bovis and Mycobacterium avium paratuberculosis (MAP), we used them as a new animal model of CD1 function. Here, we report the surprisingly divergent responses against lipids produced by these two pathogens during infection. Despite considerable overlap in lipid content, only three out of 69 animals cross‐react with M. bovis and MAP total lipid preparations. The unidentified immunodominant compound of M. bovis is a hydrophilic compound, whereas the immunodominant lipid of MAP is presented by CD1b and was identified as glucose monomycolate (GMM). The preferential recognition of GMM antigen by MAP‐infected cattle may be explained by the higher expression of GMM by MAP than by M. bovis. The bacterial species‐specific nature of the CD1‐restricted, adaptive T‐cell response affects the approach to development of lipid based immunodiagnostic tests.


Transboundary and Emerging Diseases | 2015

Evidence of transstadial and mechanical transmission of lumpy skin disease virus by Amblyomma hebraeum ticks.

Jimmy Clement Lubinga; Eeva Tuppurainen; R. Mahlare; Jacobus A.W. Coetzer; Wilhelm Heinrich Stoltsz; Estelle Hildegard Venter

Lumpy skin disease (LSD) is an economically important disease caused by LSD virus (LSDV), a Capripoxvirus, characterized by fever and circumscribed skin lesions. It is suspected to be transmitted mechanically by biting flies. To assess the vector potential of Amblyomma hebraeum in transmission of LSDV, mechanical/intrastadial and transstadial modes of transmission of the virus by this tick species were investigated. Two cattle were artificially infected as sources (donors) of infection to ticks. Ticks were infected as either nymphs or adults. Male A. hebraeum ticks were partially fed on donor animals and transferred to recipient animals to test for mechanical/intrastadial transmission. Nymphal A. hebraeum were fed to repletion on donor animals. The emergent adult ticks were placed on recipient animals to test for transstadial transmission of the virus. Successful transmission of LSDV infection was determined in recipient animals by monitoring development of clinical signs, testing of blood for the presence of LSDV by real-time PCR, virus isolation and the serum neutralization test. This report provides further evidence of mechanical/intrastadial and, for the first time, transstadial transmission of LSDV by A. hebraeum. These findings implicate A. hebraeum as a possible maintenance host in the epidemiology of the disease.


Veterinary Parasitology | 2010

Four p67 alleles identified in South African Theileria parva field samples

Kgomotso P. Sibeko; Dirk Geysen; Marinda C. Oosthuizen; Conrad A. Matthee; Milana Troskie; Frederick T. Potgieter; Jacobus A.W. Coetzer; Nicola E. Collins

Previous studies characterizing the Theileria parva p67 gene in East Africa revealed two alleles. Cattle-derived isolates associated with East Coast fever (ECF) have a 129bp deletion in the central region of the p67 gene (allele 1), compared to buffalo-derived isolates with no deletion (allele 2). In South Africa, Corridor disease outbreaks occur if there is contact between infected buffalo and susceptible cattle in the presence of vector ticks. Although ECF was introduced into South Africa in the early 20th century, it has been eradicated and it is thought that there has been no cattle to cattle transmission of T. parva since. The variable region of the p67 gene was amplified and the gene sequences analyzed to characterize South African T. parva parasites that occur in buffalo, in cattle from farms where Corridor disease outbreaks were diagnosed and in experimentally infected cattle. Four p67 alleles were identified, including alleles 1 and 2 previously detected in East African cattle and buffalo, respectively, as well as two novel alleles, one with a different 174bp deletion (allele 3), the other with a similar sequence to allele 3 but with no deletion (allele 4). Sequence variants of allele 1 were obtained from field samples originating from both cattle and buffalo. Allele 1 was also obtained from a bovine that tested T. parva positive from a farm near Ladysmith in the KwaZulu-Natal Province. East Coast fever was not diagnosed on this farm, but the p67 sequence was identical to that of T. parva Muguga, an isolate that causes ECF in Kenya. Variants of allele 2 were obtained from all T. parva samples from both buffalo and cattle, except Lad 10 and Zam 5. Phylogenetic analysis revealed that alleles 3 and 4 are monophyletic and diverged early from the other alleles. These novel alleles were not identified from South African field samples collected from cattle; however allele 3, with a p67 sequence identical to those obtained in South African field samples from buffalo, was obtained from a Zambian field isolate of a naturally infected bovine diagnosed with ECF. The p67 genetic profiles appear to be more complex than previously thought and cannot be used to distinguish between cattle- and buffalo-derived T. parva isolates in South Africa. The significance of the different p67 alleles, particularly the novel variants, in the epidemiology of theileriosis in South Africa still needs to be determined.


Journal of The South African Veterinary Association-tydskrif Van Die Suid-afrikaanse Veterinere Vereniging | 2014

Seroprevalence of Rift Valley fever and lumpy skin disease in African buffalo (Syncerus caffer) in the Kruger National Park and Hluhluwe-iMfolozi Park, South Africa.

Shamsudeen Fagbo; Jacobus A.W. Coetzer; Estelle Hildegard Venter

Rift Valley fever and lumpy skin disease are transboundary viral diseases endemic in Africa and some parts of the Middle East, but with increasing potential for global emergence. Wild ruminants, such as the African buffalo (Syncerus caffer), are thought to play a role in the epidemiology of these diseases. This study sought to expand the understanding of the role of buffalo in the maintenance of Rift Valley fever virus (RVFV) and lumpy skin disease virus (LSDV) by determining seroprevalence to these viruses during an inter-epidemic period. Buffaloes from the Kruger National Park (n = 138) and Hluhluwe-iMfolozi Park (n = 110) in South Africa were sampled and tested for immunoglobulin G (IgG) and neutralising antibodies against LSDV and RVFV using an indirect enzyme-linked immunosorbent assay (I-ELISA) and the serum neutralisation test (SNT). The I-ELISA for LSDV and RVFV detected IgG antibodies in 70 of 248 (28.2%) and 15 of 248 (6.1%) buffaloes, respectively. Using the SNT, LSDV and RVFV neutralising antibodies were found in 5 of 66 (7.6%) and 12 of 57 (21.1%), respectively, of samples tested. The RVFV I-ELISA and SNT results correlated well with previously reported results. Of the 12 SNT RVFV-positive sera, three (25.0%) had very high SNT titres of 1:640. Neutralising antibody titres of more than 1:80 were found in 80.0% of the positive sera tested. The LSDV SNT results did not correlate with results obtained by the I-ELISA and neutralising antibody titres detected were low, with the highest (1:20) recorded in only two buffaloes, whilst 11 buffaloes (4.4%) had evidence of co-infection with both viruses. Results obtained in this study complement other reports suggesting a role for buffaloes in the epidemiology of these diseases during inter-epidemic periods.Rift Valley fever and lumpy skin disease are transboundary viral diseases endemic in Africa and some parts of the Middle East, but with increasing potential for global emergence. Wild ruminants, such as the African buffalo (Syncerus caffer), are thought to play a role in the epidemiology of these diseases. This study sought to expand the understanding of the role of buffalo in the maintenance of Rift Valley fever virus (RVFV) and lumpy skin disease virus (LSDV) by determining seroprevalence to these viruses during an inter-epidemic period. Buffaloes from the Kruger National Park (n = 138) and Hluhluwe-iMfolozi Park (n = 110) in South Africa were sampled and tested for immunoglobulin G (IgG) and neutralising antibodies against LSDV and RVFV using an indirect enzyme-linked immunosorbent assay (I-ELISA) and the serum neutralisation test (SNT). The I-ELISA for LSDV and RVFV detected IgG antibodies in 70 of 248 (28.2%) and 15 of 248 (6.1%) buffaloes, respectively. Using the SNT, LSDV and RVFV neutralising antibodies were found in 5 of 66 (7.6%) and 12 of 57 (21.1%), respectively, of samples tested. The RVFV I-ELISA and SNT results correlated well with previously reported results. Of the 12 SNT RVFV-positive sera, three (25.0%) had very high SNT titres of 1:640. Neutralising antibody titres of more than 1:80 were found in 80.0% of the positive sera tested. The LSDV SNT results did not correlate with results obtained by the I-ELISA and neutralising antibody titres detected were low, with the highest (1:20) recorded in only two buffaloes, whilst 11 buffaloes (4.4%) had evidence of co-infection with both viruses. Results obtained in this study complement other reports suggesting a role for buffaloes in the epidemiology of these diseases during inter-epidemic periods.


Parasitology | 2014

The impact of co-infections on the haematological profile of East African Short-horn Zebu calves.

Ilana Conradie van Wyk; Amelia Goddard; B. Mark de C. Bronsvoort; Jacobus A.W. Coetzer; Ian Handel; Olivier Hanotte; Amy Jennings; Maia Lesosky; Henry K. Kiara; Sam M. Thumbi; Phil Toye; Mark Woolhouse; Banie L. Penzhorn

SUMMARY The cumulative effect of co-infections between pathogen pairs on the haematological response of East African Short-horn Zebu calves is described. Using a longitudinal study design a stratified clustered random sample of newborn calves were recruited into the Infectious Diseases of East African Livestock (IDEAL) study and monitored at 5-weekly intervals until 51 weeks of age. At each visit samples were collected and analysed to determine the infection status of each calf as well as their haematological response. The haematological parameters investigated included packed cell volume (PCV), white blood cell count (WBC) and platelet count (Plt). The pathogens of interest included tick-borne protozoa and rickettsias, trypanosomes and intestinal parasites. Generalized additive mixed-effect models were used to model the infectious status of pathogens against each haematological parameter, including significant interactions between pathogens. These models were further used to predict the cumulative effect of co-infecting pathogen pairs on each haematological parameter. The most significant decrease in PCV was found with co-infections of trypanosomes and strongyles. Strongyle infections also resulted in a significant decrease in WBC at a high infectious load. Trypanosomes were the major cause of thrombocytopenia. Platelet counts were also affected by interactions between tick-borne pathogens. Interactions between concomitant pathogens were found to complicate the prognosis and clinical presentation of infected calves and should be taken into consideration in any study that investigates disease under field conditions.


Ticks and Tick-borne Diseases | 2015

Lumpy skin disease: Attempted propagation in tick cell lines and presence of viral DNA in field ticks collected from naturally-infected cattle

Eeva Tuppurainen; Estelle Hildegard Venter; Jacobus A.W. Coetzer; Lesley Bell-Sakyi

Lumpy skin disease (LSD) is of substantial economic importance for the cattle industry in Africa and the Near and Middle East. Several insect species are thought to transmit the disease mechanically. Recent transmission studies have demonstrated the first evidence for a role of hard (ixodid) ticks as vectors of lumpy skin disease virus (LSDV). The aim of this study was to attempt in vitro growth of the virus in Rhipicephalus spp. tick cell lines and investigate in vivo the presence of the virus in ticks collected from cattle during LSD outbreaks in Egypt and South Africa. No evidence was obtained for replication of LSDV in tick cell lines although the virus was remarkably stable, remaining viable for 35 days at 28 °C in tick cell cultures, in growth medium used for tick cells and in phosphate buffered saline. Viral DNA was detected in two-thirds of the 56 field ticks, making this the first report of the presence of potentially virulent LSDV in ticks collected from naturally infected animals.

Collaboration


Dive into the Jacobus A.W. Coetzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eeva Tuppurainen

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Fafetine

Eduardo Mondlane University

View shared research outputs
Top Co-Authors

Avatar

Janusz T. Paweska

National Health Laboratory Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Neves

University of Pretoria

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge