Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacopo Magistretti is active.

Publication


Featured researches published by Jacopo Magistretti.


Journal of Neurophysiology | 2009

Axonal Na+ Channels Ensure Fast Spike Activation and Back-Propagation in Cerebellar Granule Cells

Shyam Diwakar; Jacopo Magistretti; Mitchell Goldfarb; Giovanni Naldi; Egidio D'Angelo

In most neurons, Na+ channels in the axon are complemented by others localized in the soma and dendrites to ensure spike back-propagation. However, cerebellar granule cells are neurons with simplified architecture in which the dendrites are short and unbranched and a single thin ascending axon travels toward the molecular layer before bifurcating into parallel fibers. Here we show that in cerebellar granule cells, Na+ channels are enriched in the axon, especially in the hillock, but almost absent from soma and dendrites. The impact of this channel distribution on neuronal electroresponsiveness was investigated by multi-compartmental modeling. Numerical simulations indicated that granule cells have a compact electrotonic structure allowing excitatory postsynaptic potentials to diffuse with little attenuation from dendrites to axon. The spike arose almost simultaneously along the whole axonal ascending branch and invaded the hillock the activation of which promoted spike back-propagation with marginal delay (<200 micros) and attenuation (<20 mV) into the somato-dendritic compartment. These properties allow granule cells to perform sub-millisecond coincidence detection of pre- and postsynaptic activity and to rapidly activate Purkinje cells contacted by the axonal ascending branch.


Annals of the New York Academy of Sciences | 2006

Oscillatory Activity in Entorhinal Neurons and Circuits: Mechanisms and Function

Clayton T. Dickson; Jacopo Magistretti; Mark H. Shalinsky; Bassam N. Hamam; Angel Alonso

Abstract: Layers II and V of the entorhinal cortex (EC) occupy a privileged anatomical position in the temporal lobe memory system that allows them to gate the main flow of information in and out of the hippocampus, respectively. In vivo studies have shown that layer II of the EC is a robust generator of theta as well as gamma activity. Theta may also be present in layer V, but the layer V network is particularly prone to genesis of short‐lasting high‐frequency oscillations (“ripples”). Interestingly, in vitro studies have shown that EC layers II and V, but not layer III, have the potential to act as independent pacemakers of population oscillatory activity. Moreover, it has also been shown that sub‐groups of principal neurons both within layers II and V, but not layer III, are endowed with autorhythmic properties. These are characterized by subthreshold oscillations where the depolarizing phase is driven by the activation of “persistent” Na+ channels. We propose that the oscillatory properties of layer II and V neurons and local circuits are responsible for setting up the proper temporal dynamics for the coordination of the multiple sensory inputs that converge onto EC and thus help to generate sensory representations and memory encoding.


The Journal of Physiology | 2010

Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells

Valeria Zampini; Stuart L. Johnson; Christoph Franz; Neil D. Lawrence; Stefan Münkner; Jutta Engel; Marlies Knipper; Jacopo Magistretti; Sergio Masetto; Walter Marcotti

Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L‐type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near‐physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre‐synaptic site co‐localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres.


The Journal of Physiology | 2006

Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study

Jacopo Magistretti; Loretta Castelli; Lia Forti; Egidio D'Angelo

Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage‐dependent Na+ currents. In this study we analysed voltage‐dependent Na+ currents of rat cerebellar granule cells (GCs) by performing whole‐cell, patch‐clamp experiments in acute rat cerebellar slices. A transient Na+ current (INaT) was always present and had the properties of a typical fast‐activating/inactivating Na+ current. In addition to INaT, robust persistent (INaP) and resurgent (INaR) Na+ currents were observed. INaP peaked at ∼−40 mV, showed half‐maximal activation at ∼−55 mV, and its maximal amplitude was about 1.5% of that of INaT. INaR was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate INaT, and showed voltage‐ and time‐dependent activation and voltage‐dependent decay kinetics. The conductance underlying INaR showed a bell‐shaped voltage dependence, with peak at −35 mV. A significant correlation was found between GC INaR and INaT peak amplitudes; however, GCs expressing INaT of similar size showed marked variability in terms of INaR amplitude, and in a fraction of cells INaR was undetectable. INaT, INaP and INaR could be accounted for by a 13‐state kinetic scheme comprising closed, open, inactivated and blocked states. Current‐clamp experiments carried out to identify possible functional correlates of INaP and/or INaR revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with INaR playing a role in their generation. Computer modelling showed that INaR promotes DAP generation and enhances high‐frequency firing, whereas INaP boosts near‐threshold firing activity. Our findings suggest that special properties of voltage‐dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially important consequences for cerebellar information transfer and computation.


Pflügers Archiv: European Journal of Physiology | 1994

Age-dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ.

Paola Rossi; Egidio D'Angelo; Jacopo Magistretti; Mauro Toselli; Vanni Taglietti

Ca2+ currents play a crucial role during neuronal growth. In this paper we describe the development of Ca2+ currents using whole-cell patch-clamp recordings in granule cells of cerebellar slices obtained from 7- to 24day-old rats. Granule cells expressed high-voltage-activated (HVA) Ca2+ currents in different proportions. The percentage of cells with a measurable HVA current, and the size of HVA current increased in parallel with granule cell maturation. At less than 14 days HVA currents consisted of a fast- and slow-inactivating component, while at more than 19 days only the slow-inactivating component remained. The fast-inactivating component had faster activation and inactivation kinetics, a more negative threshold for activation, and steeper steady-state inactivation than the slow-inactivating component. Nifedipine (5 μM) partially blocked both components.ω-Conotoxin (5 μM,ω-CgTx) blocked the slow-inactivating component rather selectively. These results indicate that HVA currents change their gating and pharmacological properties during development. Although the mechanism at the molecular level remains speculative, the developmental changes of the HVA current are relevant to the processes of granule cell maturation and excitability.


Neuroscience | 2003

Dual effect of Zn2+ on multiple types of voltage-dependent Ca2+ currents in rat palaeocortical neurons.

Jacopo Magistretti; Loretta Castelli; Vanni Taglietti; Franco Tanzi

The effects of Zn(2+) were evaluated on high-voltage-activated Ca(2+) currents expressed by pyramidal neurons acutely dissociated from rat piriform cortex. Whole-cell, patch-clamp experiments were carried out using Ba(2+) (5 mM) as the charge carrier. Zn(2+) blocked total high-voltage-activated Ba(2+) currents with an IC(50) of approximately 21 microM. In addition, after application of non-saturating Zn(2+) concentrations, residual currents activated with substantially slower kinetics than control Ba(2+) currents. Both of the above-mentioned effects of Zn(2+) were also observed in high-voltage-activated currents recorded in the presence of nearly-physiological concentrations of extracellular Ca(2+) (1 and 2 mM) rather than Ba(2+). Under the latter conditions, 30 microM Zn(2+) inhibited high-voltage-activated currents somewhat less than observed in extracellular Ba(2+) (approximately 47% and approximately 41%, respectively, vs. approximately 59%), but slowed Ca(2+)-current activation to very similar degrees. All of the pharmacological components in which Ba(2+) currents could be dissected (L-, N-, P/Q-, and R-type) were inhibited by Zn(2+), the percentage of current blocked by 30 microM Zn(2+) ranging from 34 to 57%. Moreover, the activation kinetics of all pharmacological Ba(2+) current components were slowed by Zn(2+). Hence, the lower activation speed observed in residual Ba(2+) currents after Zn(2+) block is due to a true slowing of macroscopic Ca(2+)-current activation kinetics and not to the preferential inhibition of a fast-activating current component. The inhibitory effect of Zn(2+) on Ba(2+) current amplitude was voltage-independent over the whole voltage range explored (-60 to +30 mV), hence the Zn(2+)-dependent decrease of Ba(2+) current activation speed is not the consequence of a voltage- and time-dependent relief from block. Zn(2+) also caused a slight, but significant, reduction of Ba(2+) current deactivation speed upon repolarization, which is further evidence against a depolarization-dependent unblocking mechanism. Finally, the slowing effect of Zn(2+) on Ca(2+)-channel activation kinetics was found to result in a significant, extra reduction of Ba(2+) current amplitude when action-potential-like waveforms, rather than step pulses, were used as depolarizing stimuli. We conclude that Zn(2+) exerts a dual action on multiple types of voltage-gated Ca(2+) channels, causing a blocking effect and altering the speed at which channels are delivered to conducting states, with mechanism(s) that could be distinct.


The Journal of Physiology | 2010

Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells

Nancy Osorio; Laurence Cathala; Miriam H. Meisler; Marcel Crest; Jacopo Magistretti; Patrick Delmas

Cerebellar granule (CG) cells generate high‐frequency action potentials that have been proposed to depend on the unique properties of their voltage‐gated ion channels. To address the in vivo function of Nav1.6 channels in developing and mature CG cells, we combined the study of the developmental expression of Nav subunits with recording of acute cerebellar slices from young and adult granule‐specific Scn8a KO mice. Nav1.2 accumulated rapidly at early‐formed axon initial segments (AISs). In contrast, Nav1.6 was absent at early postnatal stages but accumulated at AISs of CG cells from P21 to P40. By P40–P65, both Nav1.6 and Nav1.2 co‐localized at CG cell AISs. By comparing Na+ currents in mature CG cells (P66–P74) from wild‐type and CG‐specific Scn8a KO mice, we found that transient and resurgent Na+ currents were not modified in the absence of Nav1.6 whereas persistent Na+ current was strongly reduced. Action potentials in conditional Scn8a KO CG cells showed no alteration in threshold and overshoot, but had a faster repolarization phase and larger post‐spike hyperpolarization. In addition, although Scn8a KO CG cells kept their ability to fire action potentials at very high frequency, they displayed increased interspike‐interval variability and firing irregularity in response to sustained depolarization. We conclude that Nav1.6 channels at axon initial segments contribute to persistent Na+ current and ensure a high degree of temporal precision in repetitive firing of CG cells.


The Journal of Membrane Biology | 2003

Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons.

Loretta Castelli; Franco Tanzi; Vanni Taglietti; Jacopo Magistretti

The effects of three divalent metal cations (Mn2+, Co2+, and Cu2+) on high-voltage-activated (HVA) Ca2+ currents were studied in acutely dissociated pyramidal neurons of rat piriform cortex using the patch-clamp technique. Cu2+, Mn2+, and Co2+ blocked HVA currents conducted by Ba2+ (IBa) with IC50 of ˜920 nM, ˜58 µM, and ˜65 µM, respectively. Additionally, after application of non-saturating concentrations of the three cations, residual currents activated with substantially slower kinetics than control IBa. As a consequence, the current fraction abolished by the blocking cations typically displayed, in its early phase, an unusually fast-decaying transient. The latter phenomenon turned out to be a subtraction artifact, since none of the pharmacological components (L-, N-, P/Q-, and R-type) that constitute the total HVA currents under study showed a similarly fast early decay: hence, the slow activation kinetics of residual currents was not due to the preferential inhibition of a fast-activating/inactivating component, but rather to a true slowing effect of the blocker cations. The percent IBa-amplitude inhibition caused by Mn2+, Co2+, and Cu2+ was voltage-independent over the whole potential range explored (up to +30 mV), hence the slowing of IBa activation kinetics was not due to a mechanism of voltage- and time-dependent relief from block. Moreover, Mn2+, Co2+, and Cu2+ significantly reduced IBa deactivation speed upon repolarization, which also is not compatible with a depolarization-dependent unblocking mechanism. The above results show that 1) Cu2+ is a particularly potent HVA Ca2+-channel blocker in rat palaeocortical neurons; and 2) Mn2+, Co2+, and Cu2+, besides exerting a blocking action on HVA Ca2+-channels, also modify Ca2+-current activation and deactivation kinetics, most probably by directly interfering with channel-state transitions.


Journal of Medicinal Chemistry | 2010

Synthesis and biological evaluation of amidine, guanidine, and thiourea derivatives of 2-amino(6-trifluoromethoxy)benzothiazole as neuroprotective agents potentially useful in brain diseases.

Maurizio Anzini; Alessia Chelini; Alessandra Mancini; Andrea Cappelli; Maria Frosini; Lorenzo Ricci; Massimo Valoti; Jacopo Magistretti; Loretta Castelli; Antonio Giordani; Francesco Makovec; Salvatore Vomero

A series of amidine, thiourea, and guanidine derivatives of 2-amino-6-(trifluoromethoxy)benzothiazole termed 2, 3, and 4, respectively, and structurally related to riluzole, a neuroprotective drug in many animal models of brain disease, have been synthesized. The biological activity of compounds 2a-e, 3a-f, and 4a,b was preliminarily tested by means of an in vitro protocol of ischemia/reperfusion injury. The results demonstrated that 2c and 3a-d significantly attenuated neuronal injury. Selected for testing of their antioxidant properties, compounds 3a-d were shown to be endowed with a direct ROS scavenging activity. Compounds 3b and 3d were also evaluated for their activity on voltage-dependent Na(+) and Ca(2+) currents in neurons from rat piriform cortex. At 50 microM, compound 3b inhibited the transient Na(+) current to a much smaller extent than riluzole, whereas 3d was almost completely ineffective.


PLOS ONE | 2013

Pharmacotherapy with Fluoxetine Restores Functional Connectivity from the Dentate Gyrus to Field CA3 in the Ts65Dn Mouse Model of Down Syndrome

Fiorenza Stagni; Jacopo Magistretti; Sandra Guidi; Elisabetta Ciani; Chiara Mangano; Laura Calzà; Renata Bartesaghi

Down syndrome (DS) is a high-incidence genetic pathology characterized by severe impairment of cognitive functions, including declarative memory. Impairment of hippocampus-dependent long-term memory in DS appears to be related to anatomo-functional alterations of the hippocampal trisynaptic circuit formed by the dentate gyrus (DG) granule cells - CA3 pyramidal neurons - CA1 pyramidal neurons. No therapies exist to improve cognitive disability in individuals with DS. In previous studies we demonstrated that pharmacotherapy with fluoxetine restores neurogenesis, granule cell number and dendritic morphology in the DG of the Ts65Dn mouse model of DS. The goal of the current study was to establish whether treatment rescues the impairment of synaptic connectivity between the DG and CA3 that characterizes the trisomic condition. Euploid and Ts65Dn mice were treated with fluoxetine during the first two postnatal weeks and examined 45–60 days after treatment cessation. Untreated Ts65Dn mice had a hypotrophyc mossy fiber bundle, fewer synaptic contacts, fewer glutamatergic contacts, and fewer dendritic spines in the stratum lucidum of CA3, the terminal field of the granule cell projections. Electrophysiological recordings from CA3 pyramidal neurons showed that in Ts65Dn mice the frequency of both mEPSCs and mIPSCs was reduced, indicating an overall impairment of excitatory and inhibitory inputs to CA3 pyramidal neurons. In treated Ts65Dn mice all these aberrant features were fully normalized, indicating that fluoxetine can rescue functional connectivity between the DG and CA3. The positive effects of fluoxetine on the DG-CA3 system suggest that early treatment with this drug could be a suitable therapy, possibly usable in humans, to restore the physiology of the hippocampal networks and, hence, memory functions.

Collaboration


Dive into the Jacopo Magistretti's collaboration.

Top Co-Authors

Avatar

Angel Alonso

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Ragsdale

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Mark H. Shalinsky

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco de Curtis

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge