Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline A. Maybin is active.

Publication


Featured researches published by Jacqueline A. Maybin.


Molecular and Cellular Endocrinology | 2011

Inflammatory pathways in endometrial disorders

Jacqueline A. Maybin; Hilary O. D. Critchley

Complex interactions between the endocrine and immune systems govern the key endometrial events of implantation and menstruation. In contrast to other tissue sites, cyclical endometrial inflammation is physiological. However, dysregulation of this inflammatory response can lead to endometrial disorders. This review examines the inflammatory processes occurring in the normal endometrium during menstruation and implantation, highlighting recent advances in our understanding and gaps in current knowledge. Subsequently, the role of inflammatory pathways in the pathology of various common endometrial conditions is discussed, including heavy menstrual bleeding, dysmenorrhoea (painful periods), uterine fibroids, endometriosis and recurrent miscarriage.


American Journal of Pathology | 2011

Novel Roles for Hypoxia and Prostaglandin E2 in the Regulation of IL-8 During Endometrial Repair

Jacqueline A. Maybin; Nikhil Hirani; Hilary O. D. Critchley

The endometrium has a remarkable capacity for efficient repair; however, factors involved remain undefined. Premenstrual progesterone withdrawal leads to increased prostaglandin (PG) production and local hypoxia. Here we determined human endometrial expression of interleukin-8 (IL-8) and the roles of PGE2 and hypoxia in its regulation. Endometrial biopsy specimens (n = 51) were collected. Endometrial cells and explants were exposed to 100 nmol/L of PGE2 or 0.5% O2. The endometrial IL-8 concentration peaked during menstruation (P < 0.001) and had a significant proangiogenic effect. IL-8 was increased by PGE2 and hypoxia in secretory but not proliferative explants, which suggests that exposure to progesterone is essential. In vitro progesterone withdrawal induced significant IL-8 up-regulation in proliferative explants primed with progestins, but only in the presence of hypoxia. Epithelial cells treated simultaneously with PGE2 and hypoxia demonstrated synergistic increases in IL-8. Inhibition of HIF-1 by short hairpin RNA abolished hypoxic IL-8 induction, and inhibition of NF-κB by an adenoviral dominant negative inhibitor decreased PGE2-induced IL-8 expression (P > 0.05). Increased menstrual IL-8 is consistent with a role in repair. Progesterone withdrawal, hypoxia, and PGE2 regulate endometrial IL-8 by acting via HIF-1 and NF-κB. Hence, progesterone withdrawal may activate two distinct pathways to initiate endometrial repair.


The Journal of Clinical Endocrinology and Metabolism | 2011

The Regulation of Vascular Endothelial Growth Factor by Hypoxia and Prostaglandin F2α during Human Endometrial Repair

Jacqueline A. Maybin; Nikhil Hirani; Pamela Brown; Hilary O. D. Critchley

Context: The human endometrium has an exceptional capacity for repeated repair after menses, but its regulation remains undefined. Premenstrually, progesterone levels fall and prostaglandin (PG) F2α synthesis increases, causing spiral arteriole constriction. We hypothesized that progesterone withdrawal, PGF2α, and hypoxia increase vascular endothelial growth factor (VEGF), an endometrial repair factor. Design and Results: Endometrial biopsies were collected (n = 47) with ethical approval and consent. VEGF mRNA, quantified by quantitative RT-PCR, was increased during menstruation (P < 0.01).VEGF protein was maximally secreted from proliferative endometrial explants. Treatment of an endometrial epithelial cell line and primary human endometrial stromal cells with 100 nm PGF2α or hypoxia (0.5% O2) resulted in significant increases in VEGF mRNA and protein. VEGF was maximal when cells were cotreated with PGF2α and hypoxia simultaneously (P < 0.05–0.001). Secretory-phase endometrial explants also showed an increase in VEGF with cotreatment (P < 0.05). However, proliferative-phase explants showed no increase in VEGF on treatment with PGF2α and/or hypoxia. Proliferative tissue was induced to increase VEGF mRNA expression when exposed to progesterone and its withdrawal in vitro but only in the presence of hypoxia and PG. Hypoxia-inducible factor-1α (HIF-1α) silencing with RNA interference suppressed hypoxia-induced VEGF expression in endometrial cells but did not alter PGF2α-induced VEGF expression. Conclusions: Endometrial VEGF is increased at the time of endometrial repair. Progesterone withdrawal, PGF2α, and hypoxia are necessary for this perimenstrual VEGF expression. Hypoxia acts via HIF-1α to increase VEGF, whereas PGF2α acts in a HIF-1α-independent manner. Hence, two pathways regulate the expression of VEGF during endometrial repair.


The Journal of Clinical Endocrinology and Metabolism | 2011

In silico analysis identifies a novel role for androgens in the regulation of human endometrial apoptosis.

Elaine Marshall; Jacqueline A. Lowrey; Sheila Macpherson; Jacqueline A. Maybin; Frances Collins; Hilary O. D. Critchley; Philippa T. K. Saunders

Context: The endometrium is a multicellular, steroid-responsive tissue that undergoes dynamic remodeling every menstrual cycle in preparation for implantation and, in absence of pregnancy, menstruation. Androgen receptors are present in the endometrium. Objective: The objective of the study was to investigate the impact of androgens on human endometrial stromal cells (hESC). Design: Bioinformatics was used to identify an androgen-regulated gene set and processes associated with their function. Regulation of target genes and impact of androgens on cell function were validated using primary hESC. Setting: The study was conducted at the University Research Institute. Patients: Endometrium was collected from women with regular menses; tissues were used for recovery of cells, total mRNA, or protein and for immunohistochemistry. Results: A new endometrial androgen target gene set (n = 15) was identified. Bioinformatics revealed 12 of these genes interacted in one pathway and identified an association with control of cell survival. Dynamic androgen-dependent changes in expression of the gene set were detected in hESC with nine significantly down-regulated at 2 and/or 8 h. Treatment of hESC with dihydrotestosterone reduced staurosporine-induced apoptosis and cell migration/proliferation. Conclusions: Rigorous in silico analysis resulted in identification of a group of androgen-regulated genes expressed in human endometrium. Pathway analysis and functional assays suggest androgen-dependent changes in gene expression may have a significant impact on stromal cell proliferation, migration, and survival. These data provide the platform for further studies on the role of circulatory or local androgens in the regulation of endometrial function and identify androgens as candidates in the pathogenesis of common endometrial disorders including polycystic ovarian syndrome, cancer, and endometriosis.


Endocrinology | 2011

The Expression and Regulation of Adrenomedullin in the Human Endometrium: A Candidate for Endometrial Repair

Jacqueline A. Maybin; Sharon Battersby; Nikhil Hirani; Leonid L. Nikitenko; Hilary O. D. Critchley

After menstruation, the endometrium has a remarkable capacity for repair, but the factors involved remain undefined. We hypothesize adrenomedullin (AM) plays a role in this process. Premenstrually progesterone levels decline, stimulating prostaglandin (PG) synthesis, vasoconstriction, and hypoxia. This study aimed to determine 1) AM expression throughout the menstrual (M) cycle and 2) its regulation by PG and hypoxia. Human endometrial biopsies (n = 51) were collected with ethical approval and consent. AM mRNA expression was examined by quantitative RT-PCR and was found to be selectively elevated in endometrium from the menstrual (M) phase (P < 0.001). AM immunohistochemical staining was maximal in M and proliferative (P) endometrium. Culture of secretory, but not P, explants with 100 nm PGF2α or hypoxia (0.5% O2) increased AM mRNA (P < 0.05). P explants were induced to increase AM expression using in vitro progesterone withdrawal but required the presence of hypoxia (P < 0.05). Short hairpin sequences against hypoxia-inducible factor-1α (HIF-1α) inhibited AM hypoxic up-regulation but did not alter PGF2α-induced expression. The AM receptor was immunolocalized to endothelial cells in both lymphatic and blood vessels. Conditioned medium from PGF2α-treated cells increased endothelial cell proliferation and branching (P < 0.05). This was abolished by AM receptor antagonists. In conclusion, AM is elevated at the time of endometrial repair and induces both angiogenesis and lymphangiogenesis by stimulating endothelial cell proliferation and tube formation. In the human endometrium, AM expression is up-regulated by two mechanisms: a HIF-1α-mediated hypoxic induction and a HIF-1α-independent PGF2α pathway. These physiological mechanisms may provide novel therapeutic targets for disorders such as heavy menstrual bleeding.


Annals of the New York Academy of Sciences | 2011

Progesterone: a pivotal hormone at menstruation

Jacqueline A. Maybin; Hilary O. D. Critchley

The human endometrium is exposed to repeated inflammation every month, culminating in tissue breakdown and menstruation. Subsequently, the endometrium has a remarkable capacity for efficient repair and remodeling to enable implantation if fertilization takes place. Endometrial function is known to be governed by the ovarian hormones estradiol and progesterone. This review paper focuses on hormonal control of the cyclical tissue injury and repair that takes place in the local endometrial environment at the time of menstruation. Progesterone levels decline premenstrually as the corpus luteum regresses in the absence of pregnancy, and estradiol levels increase during the postmenstrual phase. The functional impact of these significant changes is discussed, including their immediate and downstream effects. Finally, we examine the contribution of aberrant endometrial function to the presentation of heavy menstrual bleeding and identify potential therapeutic targets for the treatment of this common gynecological problem.


Reviews in Endocrine & Metabolic Disorders | 2012

Steroid regulation of menstrual bleeding and endometrial repair

Jacqueline A. Maybin; Hilary O. D. Critchley

The ovarian steroid hormones progesterone and estradiol are well established regulators of human endometrial function. However, more recent evidence suggests that androgens and locally generated steroids, such as the glucocorticoids, also have a significant impact on endometrial breakdown and repair. The temporal and spatial pattern of steroid receptor presence in endometrial cells has a significant impact on the endometrial response to steroids. Furthermore, regulation of steroid receptor function by modulatory proteins further refines local responses. This review focuses on steroid regulation of endometrial function during the luteo-follicular transition with a focus on menstruation and endometrial repair.


Reproduction | 2004

The human corpus luteum: which cells have progesterone receptors?

Jacqueline A. Maybin; W. Colin Duncan


Seminars in Reproductive Medicine | 2011

Molecular and cellular causes of abnormal uterine bleeding of endometrial origin

Hilary O. D. Critchley; Jacqueline A. Maybin


Reproduction | 2005

The effect of human chorionic gonadotrophin on the expression of progesterone receptors in human luteal cells in vivo and in vitro

W. Colin Duncan; Jacqueline A. Maybin

Collaboration


Dive into the Jacqueline A. Maybin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian S. Fraser

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge