Jacqueline Azay-Milhau
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacqueline Azay-Milhau.
Biochemical and Biophysical Research Communications | 2008
Didier Tousch; Anne-Dominique Lajoix; Eric Hosy; Jacqueline Azay-Milhau; Karine Ferrare; Céline Jahannault; Gérard Cros; Pierre Petit
Caffeic acid and chlorogenic acid (CGA), a mono-caffeoyl ester, have been described as potential antidiabetic agents. Using in vitro studies, we report the effects of a dicaffeoyl ester, chicoric acid (CRA) purified from Cichorium intybus, on glucose uptake and insulin secretion. Our results show that CRA and CGA increased glucose uptake in L6 muscular cells, an effect only observed in the presence of stimulating concentrations of insulin. Moreover, we found that both CRA and CGA were able to stimulate insulin secretion from the INS-1E insulin-secreting cell line and rat islets of Langerhans. In the later case, the effect of CRA is only observed in the presence of subnormal glucose levels. Patch clamps studies show that the mechanism of CRA and CGA was different from that of sulfonylureas, as they did not close K(ATP) channels. Chicoric acid is a new potential antidiabetic agent carrying both insulin sensitizing and insulin-secreting properties.
Journal of Ethnopharmacology | 2013
Jacqueline Azay-Milhau; Karine Ferrare; J. Leroy; Jordan Aubaterre; Michel Tournier; Anne-Dominique Lajoix; Didier Tousch
ETHNOPHARMACOLOGICAL RELEVANCE In Eurasia folk medicine, roots of chicory (Cichorium intybus L.) have been reported to exert antidiabetic benefits. In vitro, a natural chicoric acid extract (NCRAE) from Cichorium intybus root has been shown to increase insulin secretion by pancreatic β-cells and glucose uptake by muscle cells. MATERIALS AND METHODS In vitro experiments were designed to compare the effects of two hydroxycinnamic acids, caffeic and ferulic acids, to those obtained with NCRAE (50 and 100 µg.mL(-1)) on the three major tissues implicated in glycemic regulation (pancreas, muscle and liver). In vivo experiments were performed in Wistar rats submitted to a daily intraperitoneal injection of NCRAE (3, 15 or 30 mg kg(-1)) for 4 days. On the fourth day, an intraperitoneal glucose tolerance test (IPGTT; 1 g kg(-1)) was carried out. RESULTS Our results show that the three compounds we used are able each to induce an original response. Caffeic acid mainly promotes a decrease in hepatic glycogenolysis. Ferulic acid elicits a clear increase of insulin release and a reduction of hepatic glycogenolysis. However, this compound induces an inhibition of muscle glucose uptake. NCRAE provokes an increase of insulin release and glucose uptake without any effect on hepatic glycogenolysis. We could also show that none of these compounds implicates hepatic glucose 6-phosphatase in contrast to chlorogenic acid, known as an inhibitor of glucose 6-phosphatase and which is able to decrease glucose output from hepatocytes. Our results point out that NCRAE is able to decrease blood glucose without any effect hepatic effect. Our in vivo experiments bring evidence that 4 daily IP administrations of NCRAE improve IP glucose tolerance in a dose-dependent manner and mainly via an insulin sensitizing effect. CONCLUSIONS We conclude that NCRAE presents an antihyperglycemic effect essentially due to a peripheral effect on muscle glucose uptake.
Journal of Agricultural and Food Chemistry | 2008
Thibault Sutra; Catherine Oiry; Jacqueline Azay-Milhau; Estelle Youl; Richard Magous; Pierre-Louis Teissedre; Jean-Paul Cristol; Gérard Cros
We previously showed that grape extracts enriched in different polyphenolic families were similarly able to prevent reactive oxygen species (ROS) production, although having differential effects on various features of metabolic syndrome when administered at a dose of 21 mg/kg to the fructose (60%)-fed rat (a model of metabolic syndrome). In the present work, we analyzed on the same model the effect of pure polyphenolic molecules (catechin, resveratrol, delphinidin, and gallic acid) administered at a dose of 2.1 mg/kg. Delphinidin and gallic acid prevented insulin resistance, while gallic acid prevented the elevation of blood pressure. All molecules prevented cardiac ROS overproduction and NADPH overexpression. We also showed that fructose feeding was associated with cardiac fibrosis (accumulation of collagen I) and expression of osteopontin, a factor induced by ROS and a collagen I expression inducer. Collagen I and osteopontin expressions were prevented by the administration of all polyphenolic molecules. The potential use of polyphenols in the prevention of cardiac fibrosis should be further explored.
Journal of Agricultural and Food Chemistry | 2014
Didier Tousch; Luc P. R. Bidel; Guillaume Cazals; Karine Ferrare; J. Leroy; Marie Faucanié; Hugues Chevassus; Michel Tournier; Anne-Dominique Lajoix; Jacqueline Azay-Milhau
In the present study, we obtained a dried burdock root extract (DBRE) rich in caffeoylquinic acids derivatives. We performed the chemical characterization of DBRE and explored its antihyperglycemic potential in both in vitro and in vivo experiments. Chemical analysis of DBRE using LC-MS and GC-MS revealed the presence of a great majority of dicaffeoylquinic acid derivatives (75.4%) of which 1,5-di-O-caffeoyl-4-O-maloylquinic acid represents 44% of the extract. In the in vitro experiments, DBRE is able to increase glucose uptake in cultured L6 myocytes and to decrease glucagon-induced glucose output from rat isolated hepatocytes together with a reduction of hepatic glucose 6-phosphatase activity. DBRE did not increase insulin secretion in the INS-1 pancreatic β-cell line. In vivo, DBRE improves glucose tolerance both after intraperitoneal and oral subchronic administration. In conclusion, our data demonstrate that DBRE constitutes an original set of caffeoylquinic acid derivatives displaying antihyperglycemic properties.
Diabetologia | 2014
K. Mezghenna; J. Leroy; Jacqueline Azay-Milhau; Didier Tousch; Françoise Castex; Sylvain Gervais; Viviana Delgado-Betancourt; René Gross; Anne-Dominique Lajoix
Aims/hypothesisInsulin-mediated glucose transport and utilisation are decreased in skeletal muscle from type 2 diabetic and glucose-intolerant individuals because of alterations in insulin receptor signalling, GLUT4 translocation to the plasma membrane and microvascular blood flow. Catalytic activity of the muscle-specific isoform of neuronal nitric oxide synthase (nNOS) also participates in the regulation of glucose transport and appears to be decreased in a relevant animal model of drastic insulin resistance, the obese Zucker fa/fa rat. Our objective was to determine the molecular mechanisms involved in this defect.MethodsIsolated rat muscles and primary cultures of myocytes were used for western blot analysis of protein expression, immunohistochemistry, glucose uptake measurements and GLUT4 translocation assays.ResultsnNOS expression was reduced in skeletal muscle from fa/fa rats. This was caused by increased ubiquitination of the enzyme and subsequent degradation by the ubiquitin proteasome pathway. The degradation occurred through a greater interaction of nNOS with the chaperone heat-shock protein 70 and the co-chaperone, carboxyl terminus of Hsc70-interacting protein (CHIP). In addition, an alteration in nNOS sarcolemmal localisation was observed. We confirmed the implication of nNOS breakdown in defective insulin-induced glucose transport by demonstrating that blockade of proteasomal degradation or overexpression of nNOS improved basal and/or insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of insulin-resistant myocytes.Conclusions/interpretationRecovery of nNOS in insulin-resistant muscles should be considered a potential new approach to address insulin resistance.
Journal of Ethnopharmacology | 2018
Karine Ferrare; Luc. P.R. Bidel; Abdulmomem Awwad; Patrick Poucheret; Guillaume Cazals; Françoise Lazennec; Jacqueline Azay-Milhau; Michel Tournier; Anne-Dominique Lajoix; Didier Tousch
ETHNOPHARMACOLOGICAL RELEVANCE Chicory (Cichorium intybus L.) is an indigenous vegetable widely cultivated in Europe, America and Asia. In ancient times, the leaves, flowers, seeds, and roots have been used as a wealth of health benefits including its tonic effects, the ability to ease digestive problems and to detoxify liver. In Indian traditional therapy, chicory was known to possess antidiabetic effect. In the traditional medicine of Bulgaria and Italy, chicory was used as hypoglycemic decoctions. AIMS OF THE STUDIES We wanted to obtain the complete chemical composition of the natural chicoric acid extract (NCRAE), a chicory root extract rich in chicoric acid, which previously showed its glucose tolerance effect in normal rats. To investigate if the whole NCRAE is required to be effective, we performed a comparative in vivo experiment on STZ diabetic rats treated either with NCRAE or a mixture composed of the two major compounds of NCRAE. MATERIALS AND METHODS LC-MS method has been used to analyze the exhaustive composition of NCRAE: we have determined that chicoric acid and chlorogenic acid represented 83.8% of NCRAE. So, we have prepared a solution mixture of chicoric acid and chlorogenic acid named SCCAM, in order to compare in vivo the antidiabetic effects of this last and NCRAE in streptozotocin diabetic rats. In vitro experiments were performed on L6 cell line both for glucose uptake and for the protective effect against H2O2 oxidative stress. Also, we have evaluated DPPH and ORAC (Oxygen Radical Absorbance Capacity) antioxidative capacities of the two compositions. RESULTS The LC-MS analysis confirmed the high abundance of chicoric acid (64.2%) in NCRAE and a second part of NCRAE is composed of caffeoylquinic acids (CQAs) at 19.6% with among them the chlorogenic acid. This result has permitted us to prepare a mixture of synthetic L-chicoric acid (70%) and synthetic chlorogenic acid (30%): the solution is designated SCCAM. Our results showed that both NCRAE and SCCAM are able to improve a glucose tolerance in STZ diabetic rats after a subchronic administration of seven days. Alone NCRAE allows to significantly decrease the basal hyperglycemia after six days of treatment. To explain these difference of effects between NCRAE and SCCAM, we have compared their in vitro effects on the L6 muscle cell line both for the insulin sensitizing effect and for their protective action in pretreatment against H2O2. We have also compared their antioxidant capacities. In conclusion, we demonstrated that NCRAE, a natural extract of chicory (Cichorium intybus) rich in CRA and CQAs improves glucose tolerance and reduces the basal hyperglycemia in STZ diabetic rats.
Biochimica et Biophysica Acta | 2018
Sandra A. Rebuffat; Emmanuelle Sidot; Caroline Guzman; Jacqueline Azay-Milhau; Bernard Jover; Anne-Dominique Lajoix; Sylvie Peraldi-Roux
Inflammatory factors produced and secreted by adipose tissue, in particular peri-pancreatic adipose tissue (P-WAT), may influence pancreatic β-cell dysfunction. Using the ZDF Rat model of diabetes, we show the presence of infiltrating macrophage (ED1 staining) on pancreatic tissue and P-WAT in the pre-diabetes stage of the disease. Then, when the T2D is installed, infiltrating cells decreased. Meanwhile, the P-WAT conditioned-medium composition, in terms of inflammatory factors, varies during the onset of the T2D. Using chemiarray technology, we observed an over expression of CXCL-1, -2, -3, CCL-3/MIP-1α and CXCL-5/LIX and TIMP-1 in the 9 weeks old obese ZDF pre-diabetic rat model. Surprisingly, the expression profile of these factors decreased when animals become diabetic (12 weeks obese ZDF rats). The expression of these inflammatory proteins is highly associated with inflammatory infiltrate. P-WAT conditioned-medium from pre-diabetes rats stimulates insulin secretion, cellular proliferation and apoptosis of INS-1 cells. However, inhibition of conditioned-medium chemokines acting via CXCR2 receptor do not change cellular proliferation apoptosis and insulin secretion of INS-1 cells induced by P-WAT conditioned-medium. Taken together, these results show that among the secreted chemokines, increased expression of CXCL-1, -2, -3 and CXCL-5/LIX in P-WAT conditioned-medium is concomitant with the onset of the T2D but do not exerted a direct effect on pancreatic β-cell dysfunction.
European Journal of Medicinal Chemistry | 2016
David Goyard; Bálint Kónya; Aikaterini S. Chajistamatiou; Evangelia D. Chrysina; J. Leroy; Sophie Balzarin; Michel Tournier; Didier Tousch; Pierre Petit; Cédric Duret; Patrick Maurel; László Somsák; Tibor Docsa; Pál Gergely; Jean Pierre Praly; Jacqueline Azay-Milhau; Sébastien Vidal
Diabetes & Metabolism | 2015
J. Leroy; K. Mezghenna; S. Barg; Jacqueline Azay-Milhau; Sylvie Peraldi-Roux; René Gross; Anne-Dominique Lajoix
Diabetes & Metabolism | 2015
J. Leroy; K. Mezghenna; C. Broca; A. Wojtusciszyn; Jacqueline Azay-Milhau; Sylvie Peraldi-Roux; René Gross; Anne-Dominique Lajoix