Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline Boutin is active.

Publication


Featured researches published by Jacqueline Boutin.


Global Biogeochemical Cycles | 2000

In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers

Philip D. Nightingale; Gill Malin; Cliff S. Law; Andrew J. Watson; Peter S. Liss; M.I. Liddicoat; Jacqueline Boutin; Robert C. Upstill-Goddard

Measurements of air-sea gas exchange rates are reported from two deliberate tracer experiments in the southern North Sea during February 1992 and 1993. A conservative tracer, spores of the bacterium Bacillus globigii var. Niger, was used for the first time in an in situ air-sea gas exchange experiment. This nonvolatile tracer is used to correct for dispersive dilution of the volatile tracers and allows three estimations of the transfer velocity for the same time period. The first estimation of the power dependence of gas transfer on molecular diffusivity in the marine environment is reported. This allows the impact of bubbles on estimates of the transfer velocity derived from changes in the helium/sulphur hexafluoride ratio to be assessed. Data from earlier dual tracer experiments are reinterpreted, and findings suggest that results from all dual tracer experiments are mutually consistent. The complete data set is used to test published parameterizations of gas transfer with wind speed. A gas ex- change relationship that shows a dependence on wind speed intermediate between those ofLiss and Merlivat [1986] and Wanninkhof [1992] is found to be optimal. The dual tracer data are shown to be reasonably consistent with global estimates of gas exchange based on the uptake of natural and bomb-derived radiocarbon. The degree of scatter in the data when plotted against wind speed suggests that parameters not scaling with wind speed are also influencing gas exchange rates.


Global Biogeochemical Cycles | 2001

Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models

James C. Orr; Ernst Maier-Reimer; Uwe Mikolajewicz; Patrick Monfray; Jorge L. Sarmiento; J. R. Toggweiler; Nicholas K. Taylor; Jonathan G. Palmer; Nicolas Gruber; Christopher L. Sabine; Corinne Le Quéré; Robert M. Key; Jacqueline Boutin

We have compared simulations of anthropogenic CO2 in the four three-dimensional ocean models that participated in the first phase of the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP), as a means to identify their major differences. Simulated global uptake agrees to within ±19%, giving a range of 1.85±0.35 Pg C yr−1 for the 1980–1989 average. Regionally, the Southern Ocean dominates the present-day air-sea flux of anthropogenic CO2 in all models, with one third to one half of the global uptake occurring south of 30°S. The highest simulated total uptake in the Southern Ocean was 70% larger than the lowest. Comparison with recent data-based estimates of anthropogenic CO2 suggest that most of the models substantially overestimate storage in the Southern Ocean; elsewhere they generally underestimate storage by less than 20%. Globally, the OCMIP models appear to bracket the real oceans present uptake, based on comparison of regional data-based estimates of anthropogenic CO2 and bomb 14C. Column inventories of bomb 14C have become more similar to those for anthropogenic CO2 with the time that has elapsed between the Geochemical Ocean Sections Study (1970s) and World Ocean Circulation Experiment (1990s) global sampling campaigns. Our ability to evaluate simulated anthropogenic CO2 would improve if systematic errors associated with the data-based estimates could be provided regionally.


Proceedings of the IEEE | 2010

SMOS: The Challenging Sea Surface Salinity Measurement From Space

Jordi Font; Adriano Camps; Andrés Borges; Manuel Martin-Neira; Jacqueline Boutin; Nicolas Reul; Yann Kerr; Achim Hahne; Susanne Mecklenburg

Soil Moisture and Ocean Salinity, European Space Agency, is the first satellite mission addressing the challenge of measuring sea surface salinity from space. It uses an L-band microwave interferometric radiometer with aperture synthesis (MIRAS) that generates brightness temperature images, from which both geophysical variables are computed. The retrieval of salinity requires very demanding performances of the instrument in terms of calibration and stability. This paper highlights the importance of ocean salinity for the Earths water cycle and climate; provides a detailed description of the MIRAS instrument, its principles of operation, calibration, and image-reconstruction techniques; and presents the algorithmic approach implemented for the retrieval of salinity from MIRAS observations, as well as the expected accuracy of the obtained results.


IEEE Transactions on Geoscience and Remote Sensing | 2004

The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval

Adriano Camps; Jordi Font; Mercè Vall-Llossera; Carolina Gabarró; Ignasi Corbella; Nuria Duffo; Francesc Torres; S. Blanch; Albert Aguasca; Ramon Villarino; L. Enrique; J. Miranda; Juan José Arenas; A. Julià; J. Etcheto; Vicente Caselles; Alain Weill; Jacqueline Boutin; Stephanie Contardo; Raquel Niclòs; Raúl Rivas; Steven C. Reising; Patrick Wursteisen; Michael Berger; Manuel Martin-Neira

Soil Moisture and Ocean Salinity (SMOS) is an Earth Explorer Opportunity Mission from the European Space Agency with a launch date in 2007. Its goal is to produce global maps of soil moisture and ocean salinity variables for climatic studies using a new dual-polarization L-band (1400-1427 MHz) radiometer Microwave Imaging Radiometer by Aperture Synthesis (MIRAS). SMOS will have multiangular observation capability and can be optionally operated in full-polarimetric mode. At this frequency the sensitivity of the brightness temperature (T/sub B/) to the sea surface salinity (SSS) is low: 0.5 K/psu for a sea surface temperature (SST) of 20/spl deg/C, decreasing to 0.25 K/psu for a SST of 0/spl deg/C. Since other variables than SSS influence the T/sub B/ signal (sea surface temperature, surface roughness and foam), the accuracy of the SSS measurement will degrade unless these effects are properly accounted for. The main objective of the ESA-sponsored Wind and Salinity Experiment (WISE) field experiments has been the improvement of our understanding of the sea state effects on T/sub B/ at different incidence angles and polarizations. This understanding will help to develop and improve sea surface emissivity models to be used in the SMOS SSS retrieval algorithms. This paper summarizes the main results of the WISE field experiments on sea surface emissivity at L-band and its application to a performance study of multiangular sea surface salinity retrieval algorithms. The processing of the data reveals a sensitivity of T/sub B/ to wind speed extrapolated at nadir of /spl sim/0.23-0.25 K/(m/s), increasing at horizontal (H) polarization up to /spl sim/0.5 K/(m/s), and decreasing at vertical (V) polarization down to /spl sim/-0.2 K/(m/s) at 65/spl deg/ incidence angle. The sensitivity of T/sub B/ to significant wave height extrapolated to nadir is /spl sim/1 K/m, increasing at H-polarization up to /spl sim/1.5 K/m, and decreasing at V-polarization down to -0.5 K/m at 65/spl deg/. A modulation of the instantaneous brightness temperature T/sub B/(t) is found to be correlated with the measured sea surface slope spectra. Peaks in T/sub B/(t) are due to foam, which has allowed estimates of the foam brightness temperature and, taking into account the fractional foam coverage, the foam impact on the sea surface brightness temperature. It is suspected that a small azimuthal modulation /spl sim/0.2-0.3 K exists for low to moderate wind speeds. However, much larger values (4-5 K peak-to-peak) were registered during a strong storm, which could be due to increased foam. These sensitivities are satisfactorily compared to numerical models, and multiangular T/sub B/ data have been successfully used to retrieve sea surface salinity.


IEEE Transactions on Geoscience and Remote Sensing | 2008

Overview of the SMOS Sea Surface Salinity Prototype Processor

Sonia Zine; Jacqueline Boutin; Jordi Font; Nicolas Reul; Philippe Waldteufel; Carolina Gabarró; Joseph Tenerelli; François Petitcolin; Jean-Luc Vergely; Marco Talone; Steven Delwart

The L-band interferometric radiometer onboard the Soil Moisture and Ocean Salinity mission will measure polarized brightness temperatures (Tb). The measurements are affected by strong radiometric noise. However, during a satellite overpass, numerous measurements are acquired at various incidence angles at the same location on the Earths surface. The sea surface salinity (SSS) retrieval algorithm implemented in the Level 2 Salinity Prototype Processor (L2SPP) is based on an iterative inversion method that minimizes the differences between Tb measured at different incidence angles and Tb simulated by a full forward model. The iterative method is initialized with a first-guess surface salinity that is iteratively modified until an optimal fit between the forward model and the measurements is obtained. The forward model takes into account atmospheric emission and absorption, ionospheric effects (Faraday rotation), scattering of celestial radiation by the rough ocean surface, and rough sea surface emission as approximated by one of three models. Potential degradation of the retrieval results is indicated through a flagging strategy. We present results of tests of the L2SPP involving horizontally uniform scenes with no disturbing factors (such as sun glint or land proximity) other than wind-induced surface roughness. Regardless of the roughness model used, the error on the retrieved SSS depends on the location within the swath and ranges from 0.5 psu at the center of the swath to 1.7 psu at the edge, at 35 psu and 15degC. Dual-polarization (DP) mode provides a better correction for wind-speed (WS) biases than pseudofirst Stokes mode (ST1). For a WS bias of -1 mmiddots-1, the corresponding SSS bias at the center of the swath is equal to -0.3 psu in DP mode and to -0.5 psu in ST1 mode. The inversion methodology implicitly assumes that WS errors follow a Gaussian distribution, even though these errors should follow more closely a Rayleigh distribution. For this reason, the use of wind components, which typically exhibit Gaussian error distributions, may be preferred in the retrieval. However, the use of noisy wind components creates WS and SSS biases at low WSs (0.1 psu at 3 mmiddots-1). At a sea surface temperature (SST) of 15degC, the retrieved SSS is weakly sensitive to the SST biases, with the SSS bias always lower than 0.3 psu for SST biases ranging from -0.5degC to -2degC. In DP mode, biases in the vertical total electron content (TEC) of the atmosphere result in SSS biases smaller than 0.2 psu. The pseudofirst Stokes mode is insensitive to TEC. Failure to fully account for sea surface roughness scattering effects in the computation of sky radiation contribution leads to a maximum SSS bias of 0.2 psu in the selected configuration, i.e., a descending orbit over the Northern Pacific in February. To achieve SSS biases that are smaller than 0.2 psu, special care must be taken to correct for biases at low WS and to ensure that the bias on the mean WS (averaged over 200 km times 200 km and ten days) remains smaller than 0.5 mmiddots-1.


Surveys in Geophysics | 2014

Sea Surface Salinity Observations from Space with the SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle

Nicolas Reul; Severine Fournier; Jacqueline Boutin; Olga Hernandez; Christophe Maes; Bertrand Chapron; G. Alory; Yves Quilfen; Joseph Tenerelli; Simmon Morisset; Yann Kerr; Susanne Mecklenburg; Steven Delwart

While it is well known that the ocean is one of the most important component of the climate system, with a heat capacity 1,100 times greater than the atmosphere, the ocean is also the primary reservoir for freshwater transport to the atmosphere and largest component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions, are now providing the first space-borne measurements of the sea surface salinity (SSS). In this paper, we present examples demonstrating how SMOS-derived SSS data are being used to better characterize key land–ocean and atmosphere–ocean interaction processes that occur within the marine hydrological cycle. In particular, SMOS with its ocean mapping capability provides observations across the world’s largest tropical ocean fresh pool regions, and we discuss from intraseasonal to interannual precipitation impacts as well as large-scale river runoff from the Amazon–Orinoco and Congo rivers and its offshore advection. Synergistic multi-satellite analyses of these new surface salinity data sets combined with sea surface temperature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall estimates, and in situ observations are shown to yield new freshwater budget insight. Finally, SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to examine the response of the upper ocean to tropical cyclone passage including the potential role that a freshwater-induced upper ocean barrier layer may play in modulating surface cooling and enthalpy flux in tropical cyclone track regions.


IEEE Transactions on Geoscience and Remote Sensing | 2012

First Assessment of SMOS Data Over Open Ocean: Part II—Sea Surface Salinity

Jacqueline Boutin; Nicolas Martin; Xiaobin Yin; Jordi Font; Nicolas Reul; Paul Spurgeon

We validate Soil Moisture and Ocean Salinity (SMOS) sea surface salinity (SSS) retrieved during August 2010 from the European Space Agency SMOS processing. Biases appear close to land and ice and between ascending and descending orbits; they are linked to image reconstruction issues and instrument calibration and remain under study. We validate the SMOS SSS in conditions where these biases appear to be small. We compare SMOS and ARGO SSS over four regions far from land and ice using only ascending orbits. Four modelings of the impact of the wind on the sea surface emissivity have been tested. Results suggest that the L-band brightness temperature is not linearly related to the wind speed at high winds as expected in the presence of emissive foam, but that the foam effect is less than previously modeled. Given the large noise on individual SMOS measurements, a precision suitable for oceanographic studies can only be achieved after averaging SMOS SSS. Over selected regions and after mean bias removal, the precision on SSS retrieved from ascending orbits and averaged over 100 km × 100 km and 10 days is between 0.3 and 0.5 pss far from land and sea ice borders. These results have been obtained with forward models not fitted to satellite L-band measurements, and image reconstruction and instrument calibration are expected to improve. Hence, we anticipate that deducing, from SMOS measurements, SSS maps at 200 km × 200 km, 10 days resolution with an accuracy of 0.2 pss at a global scale is not out of reach.


International Journal of Remote Sensing | 2013

SMOS first data analysis for sea surface salinity determination

Jordi Font; Jacqueline Boutin; Nicolas Reul; Paul Spurgeon; Joaquim Ballabrera-Poy; Andrei Chuprin; Carolina Gabarró; Jérôme Gourrion; Sébastien Guimbard; Claire Henocq; Samantha Lavender; Nicolas Martin; Justino Martínez; M. E. McCulloch; Ingo Meirold-Mautner; César Mugerin; François Petitcolin; Marcos Portabella; Roberto Sabia; Marco Talone; Joseph Tenerelli; Antonio Turiel; Jean-Luc Vergely; Philippe Waldteufel; Xiaobin Yin; Sonia Zine; Steven Delwart

Soil Moisture and Ocean Salinity (SMOS), launched on 2 November 2009, is the first satellite mission addressing sea surface salinity (SSS) measurement from space. Its unique payload is the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS), a new two-dimensional interferometer designed by the European Space Agency (ESA) and operating at the L-band frequency. This article presents a summary of SSS retrieval from SMOS observations and shows initial results obtained one year after launch. These results are encouraging, but also indicate that further improvements at various data processing levels are needed and hence are currently under investigation.


Journal of Atmospheric and Oceanic Technology | 2010

Vertical Variability of Near-Surface Salinity in the Tropics: Consequences for L-Band Radiometer Calibration and Validation

Claire Henocq; Jacqueline Boutin; Gilles Reverdin; François Petitcolin; Sabine Arnault; Philippe Lattes

Abstract Two satellite missions are planned to be launched in the next two years; the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautics and Space Administration (NASA) Aquarius missions aim at detecting sea surface salinity (SSS) using L-band radiometry (1.4 GHz). At that frequency, the skin depth is on the order of 1 cm. However, the calibration and validation of L-band-retrieved SSS will be done with in situ measurements, mainly taken at 5-m depth. To anticipate and understand vertical salinity differences in the first 10 m of the ocean surface layer, in situ vertical profiles are analyzed. The influence of rain events is studied. Tropical Atmosphere Ocean (TAO) moorings, the most comprehensive dataset, provide measurements of salinity taken simultaneously at 1, 5, and 10 m and measurements of rain rate. Then, observations of vertical salinity differences, sorted according to their vertical levels, are expanded through the tropical band (30°S–30°N) using th...


IEEE Transactions on Geoscience and Remote Sensing | 2012

Overview of the First SMOS Sea Surface Salinity Products. Part I: Quality Assessment for the Second Half of 2010

Nicolas Reul; Joseph Tenerelli; Jacqueline Boutin; Bertrand Chapron; Frederic Paul; Emilie Brion; Fabienne Gaillard; Olivier Archer

Multi-angular images of the brightness temperature (TB) of the Earth at 1.4 GHz are reconstructed from the Soil Moisture and Ocean Salinity (SMOS) satellite sensor data since end 2009. Sea surface salinity (SSS) products remote sensing from space is being attempted using these data over the world oceans. The quality of the first version of the European Space Agency operational Level 2 (L2) SSS swath products is assessed in this paper, using satellite/in situ SSS data match-ups that were collected over the second half of 2010. This database reveals that 95% of the SMOS L2 products show a global error standard deviation on the order of ~ 1.3 practical salinity scale. Simple spatiotemporal aggregation of the L2 products to generate monthly SSS maps at 1° ×1° spatial resolution reduces the error down to about 0.6 globally and 0.4 in the tropics for 90% of the data. Several major problems are, however, detected in the products. Systematically, SMOS SSS data are biased within a ~ 1500 km wide belt along the world coasts and sea ice edges, with a contamination intensity and spread varying from ascending to descending passes. Numerous world ocean areas are permanently or intermittently contaminated by radio-frequency interferences, particularly in the northern high latitudes and following Asia coastlines. Moreover, temporal drifts in the retrieved SSS fields are found with varying signatures in ascending and descending passes. In descending passes, a time-dependent strong latitudinal bias is found, with maximum amplitude reached at the end of the year. Errors in the forward modeling of the wind-induced emissivity and of the sea surface scattered galactic sources are as well identified, biasing the sss retrievals at high and low winds and when the galactic equator sources are reflected toward the sensor.

Collaboration


Dive into the Jacqueline Boutin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliane Merlivat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Martin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Xiaobin Yin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jordi Font

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Philippe Waldteufel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Yann Kerr

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

Emmanuel P. Dinnat

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge