Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline Chrast is active.

Publication


Featured researches published by Jacqueline Chrast.


Nature | 2012

Landscape of transcription in human cells

Sarah Djebali; Carrie A. Davis; Angelika Merkel; Alexander Dobin; Timo Lassmann; Ali Mortazavi; Andrea Tanzer; Julien Lagarde; Wei Lin; Felix Schlesinger; Chenghai Xue; Georgi K. Marinov; Jainab Khatun; Brian A. Williams; Chris Zaleski; Joel Rozowsky; Maik Röder; Felix Kokocinski; Rehab F. Abdelhamid; Tyler Alioto; Igor Antoshechkin; Michael T. Baer; Nadav S. Bar; Philippe Batut; Kimberly Bell; Ian Bell; Sudipto Chakrabortty; Xian Chen; Jacqueline Chrast; Joao Curado

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Genome Research | 2012

GENCODE: The reference human genome annotation for The ENCODE Project

Jennifer Harrow; Adam Frankish; José Manuel Rodríguez González; Electra Tapanari; Mark Diekhans; Felix Kokocinski; Bronwen Aken; Daniel Barrell; Amonida Zadissa; Stephen M. J. Searle; I. Barnes; Alexandra Bignell; Veronika Boychenko; Toby Hunt; Mike Kay; Gaurab Mukherjee; Jeena Rajan; Gloria Despacio-Reyes; Gary Saunders; Charles A. Steward; Rachel A. Harte; Mike Lin; Cédric Howald; Andrea Tanzer; Thomas Derrien; Jacqueline Chrast; Nathalie Walters; Suganthi Balasubramanian; Baikang Pei; Michael L. Tress

The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.


PLOS ONE | 2012

Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

Sarah Djebali; Julien Lagarde; Philipp Kapranov; Vincent Lacroix; Christelle Borel; Jonathan M. Mudge; Cédric Howald; Sylvain Foissac; Catherine Ucla; Jacqueline Chrast; Paolo Ribeca; David Martin; Ryan R. Murray; Xinping Yang; Lila Ghamsari; Chenwei Lin; Ian Bell; Erica Dumais; Jorg Drenkow; Michael L. Tress; Josep Lluís Gelpí; Modesto Orozco; Alfonso Valencia; Nynke L. van Berkum; Bryan R. Lajoie; Marc Vidal; John A. Stamatoyannopoulos; Philippe Batut; Alexander Dobin; Jennifer Harrow

The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.


Human Molecular Genetics | 2008

Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome

Jessica Molina; Paulina Carmona-Mora; Jacqueline Chrast; Paola Krall; César P. Canales; James R. Lupski; Alexandre Reymond; Katherina Walz

The Potocki-Lupski syndrome (PTLS) is associated with a microduplication of 17p11.2. Clinical features include multiple congenital and neurobehavioral abnormalities and autistic features. We have generated a PTLS mouse model, Dp(11)17/+, that recapitulates some of the physical and neurobehavioral phenotypes present in patients. Here, we investigated the social behavior and gene expression pattern of this mouse model in a pure C57BL/6-Tyr(c-Brd) genetic background. Dp(11)17/+ male mice displayed normal home-cage behavior but increased anxiety and increased dominant behavior in specific tests. A subtle impairment in the preference for a social target versus an inanimate target and abnormal preference for social novelty (the preference to explore an unfamiliar mouse versus a familiar one) was also observed. Our results indicate that these animals could provide a valuable model to identify the specific gene(s) that confer abnormal social behaviors and that map within this delimited genomic deletion interval. In a first attempt to identify candidate genes and for elucidating the mechanisms of regulation of these important phenotypes, we directly assessed the relative transcription of genes within and around this genomic interval. In this mouse model, we found that candidates genes include not only most of the duplicated genes, but also normal-copy genes that flank the engineered interval; both categories of genes showed altered expression levels in the hippocampus of Dp(11)17/+ mice.


PLOS Biology | 2010

Phenotypic Consequences of Copy Number Variation: Insights from Smith-Magenis and Potocki-Lupski Syndrome Mouse Models

Guénola Ricard; Jessica Molina; Jacqueline Chrast; Wenli Gu; Nele Gheldof; Sylvain Pradervand; Frédéric Schütz; Juan I. Young; James R. Lupski; Alexandre Reymond; Katherina Walz

The characterization of mice with different number of copies of the same genomic segment shows that structural changes influence the phenotypic outcome independently of gene dosage.


Genome Research | 2012

Combining RT-PCR-seq and RNA-seq to catalog all genic elements encoded in the human genome

Cédric Howald; Andrea Tanzer; Jacqueline Chrast; Felix Kokocinski; Thomas Derrien; Nathalie Walters; José Manuel Rodríguez González; Adam Frankish; Bronwen Aken; Thibaut Hourlier; Jan-Hinnerk Vogel; Simon White; Stephen M. J. Searle; Jennifer Harrow; Tim Hubbard; Roderic Guigó; Alexandre Reymond

Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon-exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon-exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ~11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.


Genome Research | 2011

Copy number variation modifies expression time courses

Evelyne Chaignat; Emilie Aı̈t Yahya-Graison; Charlotte N. Henrichsen; Jacqueline Chrast; Frédéric Schütz; Sylvain Pradervand; Alexandre Reymond

A preliminary understanding into the phenotypic effect of DNA segment copy number variation (CNV) is emerging. These rearrangements were demonstrated to influence, in a somewhat dose-dependent manner, the expression of genes that map within them. They were also shown to modify the expression of genes located on their flanks and sometimes those at a great distance from their boundary. Here we demonstrate, by monitoring these effects at multiple life stages, that these controls over expression are effective throughout mouse development. Similarly, we observe that the more specific spatial expression patterns of CNV genes are maintained through life. However, we find that some brain-expressed genes mapping within CNVs appear to be under compensatory loops only at specific time points, indicating that the effect of CNVs on these genes is modulated during development. Notably, we also observe that CNV genes are significantly enriched within transcripts that show variable time courses of expression between strains. Thus, modifying the copy number of a gene may potentially alter not only its expression level, but also the timing of its expression.


Human Mutation | 2014

TBC1D7 Mutations are Associated with Intellectual Disability, Macrocrania, Patellar Dislocation, and Celiac Disease

Ali Abdullah Alfaiz; Lucia Micale; Barbara Mandriani; Bartolomeo Augello; Maria Teresa Pellico; Jacqueline Chrast; Ioannis Xenarios; Leopoldo Zelante; Giuseppe Merla; Alexandre Reymond

TBC1D7 forms a complex with TSC1 and TSC2 that inhibits mTORC1 signaling and limits cell growth. Mutations in TBC1D7 were reported in a family with intellectual disability (ID) and macrocrania. Using exome sequencing, we identified two sisters homozygote for the novel c.17_20delAGAG, p.R7TfsX21 TBC1D7 truncating mutation. In addition to the already described macrocephaly and mild ID, they share osteoarticular defects, patella dislocation, behavioral abnormalities, psychosis, learning difficulties, celiac disease, prognathism, myopia, and astigmatism. Consistent with a loss‐of‐function of TBC1D7, the patients cell lines show an increase in the phosphorylation of 4EBP1, a direct downstream target of mTORC1 and a delay in the initiation of the autophagy process. This second family allows enlarging the phenotypic spectrum associated with TBC1D7 mutations and defining a TBC1D7 syndrome. Our work reinforces the involvement of TBC1D7 in the regulation of mTORC1 pathways and suggests an altered control of autophagy as possible cause of this disease.


American Journal of Human Genetics | 2015

A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology

Eugenia Migliavacca; Christelle Golzio; Katrin Männik; Ian Blumenthal; Edwin C. Oh; Louise Harewood; Jack A. Kosmicki; Maria Nicla Loviglio; Giuliana Giannuzzi; Loyse Hippolyte; Anne M. Maillard; Ali Abdullah Alfaiz; Robert Witwicki; Gérard Didelot; Ilse van der Werf; Ali A. Alfaiz; Marianna Zazhytska; Jacqueline Chrast; Aurélien Macé; Sven Bergmann; Zoltán Kutalik; Vanessa Siffredi; Flore Zufferey; Danielle Martinet; Frédérique Béna; Anita Rauch; Sonia Bouquillon; Joris Andrieux; Bruno Delobel; Odile Boute

The 16p11.2 600 kb copy-number variants (CNVs) are associated with mirror phenotypes on BMI, head circumference, and brain volume and represent frequent genetic lesions in autism spectrum disorders (ASDs) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal 16p11.2 CNVs. Transcript perturbations correlated with clinical endophenotypes and were enriched for genes associated with ASDs, abnormalities of head size, and ciliopathies. Ciliary gene expression was also perturbed in orthologous mouse models, raising the possibility that ciliary dysfunction contributes to 16p11.2 pathologies. In support of this hypothesis, we found structural ciliary defects in the CA1 hippocampal region of 16p11.2 duplication mice. Moreover, by using an established zebrafish model, we show genetic interaction between KCTD13, a key driver of the mirrored neuroanatomical phenotypes of the 16p11.2 CNV, and ciliopathy-associated genes. Overexpression of BBS7 rescues head size and neuroanatomical defects of kctd13 morphants, whereas suppression or overexpression of CEP290 rescues phenotypes induced by KCTD13 under- or overexpression, respectively. Our data suggest that dysregulation of ciliopathy genes contributes to the clinical phenotypes of these CNVs.


Nature plants | 2017

Low number of fixed somatic mutations in a long-lived oak tree

Emanuel Schmid-Siegert; Namrata Sarkar; Christian Iseli; Sandra Calderon; Caroline Gouhier-Darimont; Jacqueline Chrast; Pietro Cattaneo; Frédéric Schütz; Laurent Farinelli; Marco Pagni; Michel Schneider; Jérémie Voumard; Michel Jaboyedoff; Christian Fankhauser; Christian S. Hardtke; Laurent Keller; John R. Pannell; Alexandre Reymond; Marc Robinson-Rechavi; Ioannis Xenarios; Philippe Reymond

Because plants do not possess a defined germline, deleterious somatic mutations can be passed to gametes, and a large number of cell divisions separating zygote from gamete formation may lead to many mutations in long-lived plants. We sequenced the genome of two terminal branches of a 234-year-old oak tree and found several fixed somatic single-nucleotide variants whose sequential appearance in the tree could be traced along nested sectors of younger branches. Our data suggest that stem cells of shoot meristems in trees are robustly protected from the accumulation of mutations.Sequencing of nested branches from a 234-year-old oak tree reveals a low number of somatic mutations accumulating during its lifetime, implying that mechanisms are in place to reduce these potentially deleterious mutations during ageing.

Collaboration


Dive into the Jacqueline Chrast's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Harrow

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Adam Frankish

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Schütz

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge