Jacqueline Deschamps
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacqueline Deschamps.
Development | 2005
Jacqueline Deschamps; Johan van Nes
The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation.
Cell | 1994
Jeroen Charité; Wim de Graaff; Sanbing Shen; Jacqueline Deschamps
Transgenic embryos were generated carrying a Hoxb-8 transgene under control of the mouse RAR beta 2 promoter, which extends the normal expression domain to more anterior regions of the embryo. These embryos showed mirror-image duplications in the forelimb, analogous to the duplications observed in chick in response to transplantation of a ZPA to the anterior margin of the limb bud. Examination of Sonic hedgehog, Fgf-4, and Hoxd-11 gene expression confirmed that a second ZPA had been generated at the anterior side of the limb bud. Besides other alterations, posterior homeotic transformations of axial structures were observed, involving the first spinal (Frorieps) ganglion and several cervical vertebrae.
Developmental Biology | 2010
Moisés Mallo; Deneen M. Wellik; Jacqueline Deschamps
Several decades have passed since the discovery of Hox genes in the fruit fly Drosophila melanogaster. Their unique ability to regulate morphologies along the anteroposterior (AP) axis (Lewis, 1978) earned them well-deserved attention as important regulators of embryonic development. Phenotypes due to loss- and gain-of-function mutations in mouse Hox genes have revealed that the spatio-temporally controlled expression of these genes is critical for the correct morphogenesis of embryonic axial structures. Here, we review recent novel insight into the modalities of Hox protein function in imparting specific identity to anatomical regions of the vertebral column, and in controlling the emergence of these tissues concomitantly with providing them with axial identity. The control of these functions must have been intimately linked to the shaping of the body plan during evolution.
Mechanisms of Development | 1996
Nathalie M. T. van der Lugt; Mark J Alkema; Anton Berns; Jacqueline Deschamps
Drosophila homeotic genes and vertebrate Hox genes are involved in the anteroposterior organization of the developing embryo. In Drosophila, the Polycomb- and trithorax-group genes are required to maintain the homeotic genes throughout development in the repressed or activated state, respectively. The murine Bmi-1 proto-oncogene was shown to exhibit homology to the Polycomb-group gene Posteior sex combs. Mice lacking the Bmi-1 gene revealed posterior transformations along the axial skeleton, whereas transgenic mice overexpressing Bmi-1 display anterior transformations. We have analysed the expression patterns of several Hox genes by RNA in situ hybridization on serial sections of 11.5- and 12.5-day Bmi-1 null mutant embryos. Furthermore, we have analysed the expression of a Hoxc-8/LacZ fusion gene in younger embryos. Our analyses show that Bmi-1 is involved in the repression of a subset of Hox genes from different clusters from at least day 9.5 onwards. We discuss the possibility that members of the murine Polycomb-group can form multimeric protein complexes of different compositions with varying affinity or specificity for different subsets of Hox genes.
Developmental Cell | 2009
Teddy Young; Jennifer Rowland; Cesca van de Ven; Monika Bialecka; Ana Nóvoa; Marta Carapuço; Johan van Nes; Wim de Graaff; Isabelle Duluc; Jean Noel Freund; Felix Beck; Moisés Mallo; Jacqueline Deschamps
Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenotypes. Conversely, posterior (paralog group 13) Hox genes can prematurely arrest posterior axial growth when precociously expressed. Our data suggest that the transition from trunk to tail Hox gene expression successively regulates the construction and termination of axial structures in the mouse embryo. Thus, Hox genes seem to differentially orchestrate posterior expansion of embryonic tissues during axial morphogenesis as an integral part of their function in specifying head-to-tail identity. In addition, we present evidence that Cdx and Hox transcription factors exert these effects by controlling Wnt signaling. Concomitant regulation of Cyp26a1 expression, restraining retinoic acid signaling away from the posterior growth zone, may likewise play a role in timing the trunk-tail transition.
Development | 2003
Sylvie Forlani; Kirstie A. Lawson; Jacqueline Deschamps
Early sequential expression of mouse Hox genes is essential for their later function. Analysis of the relationship between early Hox gene expression and the laying down of anterior to posterior structures during and after gastrulation is therefore crucial for understanding the ontogenesis of Hox-mediated axial patterning. Using explants from gastrulation stage embryos, we show that the ability to express 3′ and 5′ Hox genes develops sequentially in the primitive streak region, from posterior to anterior as the streak extends, about 12 hours earlier than overt Hox expression. The ability to express autonomously the earliest Hox gene, Hoxb1, is present in the posterior streak region at the onset of gastrulation, but not in the anterior region at this stage. However, the posterior region can induce Hoxb1 expression in these anterior region cells. We conclude that tissues are primed to express Hox genes early in gastrulation, concomitant with primitive streak formation and extension, and that Hox gene inducibility is transferred by cell to cell signalling. Axial structures that will later express Hox genes are generated in the node region in the period that Hox expression domains arrive there and continue to spread rostrally. However, lineage analysis showed that definitive Hox codes are not fixed at the node, but must be acquired later and anterior to the node in the neurectoderm, and independently in the mesoderm. We conclude that the rostral progression of Hox gene expression must be modulated by gene regulatory influences from early on in the posterior streak, until the time cells have acquired their stable positions along the axis well anterior to the node.
Development | 2006
Johan van Nes; Wim de Graaff; Franck Lebrin; Markus Gerhard; Felix Beck; Jacqueline Deschamps
Caudal related homeobox (Cdx) genes have so far been shown to be important for embryonic axial elongation and patterning in several vertebrate species. We have generated a targeted mutation of mouse Cdx4, the third member of this family of transcription factor encoding genes and the last one to be inactivated genetically. Cdx4-null embryos were born healthy and appeared morphologically normal. A subtle contribution of Cdx4 to anteroposterior (AP) vertebral patterning was revealed in Cdx1/Cdx4 and Cdx2/Cdx4 compound mutants. Neither Cdx4-null nor Cdx1/Cdx4 double mutants are impaired in their axial elongation, but a redundant contribution of Cdx4 in this function was unveiled when combined with a Cdx2 mutant allele. In addition, inactivation of Cdx4 combined with heterozygous loss of Cdx2 results in embryonic death around E10.5 and reveals a novel function of Cdx genes in placental ontogenesis. In a subset of Cdx2/Cdx4 compound mutants, the fully grown allantois failed to fuse with the chorion. The remaining majority of these mutants undergo successful chorio-allantois fusion but fail to properly extend their allantoic vascular network into the chorionic ectoderm and do not develop a functional placental labyrinth. We present evidence that Cdx4 plays a crucial role in the ontogenesis of the allantoic component of the placental labyrinth when one Cdx2 allele is inactivated. The axial patterning role of Cdx transcription factors thus extends posteriorly to the epiblast-derived extra-embryonic mesoderm and, consequent upon the evolution of placental mammals, is centrally involved in placental morphogenesis. The relative contribution of Cdx family members in the stepwise ontogenesis of a functional placenta is discussed, with Cdx2 playing an obligatory part, assisted by Cdx4. The possible participation of Cdx1 was not documented but cannot be ruled out until allelic combinations further decreasing Cdx dose have been analyzed. Cdx genes thus operate in a redundant way during placentogenesis, as they do during embryonic axial elongation and patterning, and independently from the previously reported early Cdx2-specific role in the trophectoderm at implantation.
Mechanisms of Development | 1991
Dirk-Jan E. Opstelten; R. Vogels; Benoît Robert; Eric Kalkhoven; Fried Zwartkruis; Lia de Laaf; Olivier Destrée; Jacqueline Deschamps; Kirstie A. Lawson; Frits Meijlink
The murine S8 gene, originally identified by Kongsuwan et al. [EMBO J. 7(1988)2131-2138] encodes a homeodomain which resembles those of the paired family. We studied the expression pattern during mid-gestation embryogenesis of S8 by in situ hybridization. Expression was detected locally in craniofacial mesenchyme, in the limb, the heart and the somites and sclerotomes all along the axis, and was absent from the central and peripheral nervous system, splanchnopleure, and endodermal derivatives. This pattern differs considerably from that of most previously described homeobox containing genes. By genetic analysis, the gene was located on chromosome 2, about 20 cM from the HOX-4 cluster.
Mechanisms of Development | 1999
Eric van den Akker; Mark Reijnen; Jeroen Korving; Antje Brouwer; Frits Meijlink; Jacqueline Deschamps
Hoxb8 mutant mice were generated by inserting the lacZ coding sequence in frame with the first exon of Hoxb8. These mice express a fusion protein with a functional beta-galactosidase activity instead of Hoxb8. Mutant embryos were analyzed for anatomical changes. The results indicate that Hoxb8 is not an indispensable regulator of A-P patterning in the forelimb, unlike suggested by our Hoxb8 gain of function experiments (Charité J, DeGraaff W, Shen S, Deschamps J. Cell 1994;78:589-601). The null mutant phenotypic traits include degeneration of the second spinal ganglion (C2), an abnormality opposite to the alteration in the gain of function transgenic mice. Subtle changes in the thoracic part of the vertebral column were observed as well. Adult homozygous mutants exhibit an abnormal clasping reflex of the limbs.
Development | 2012
Isabelle Duluc; Thoueiba Saandi; Irwin Davidson; Monika Bialecka; Toshiro Sato; Nick Barker; Hans Clevers; Catrin Pritchard; Doug J. Winton; Nicholas A. Wright; Jean Noel Freund; Jacqueline Deschamps; Felix Beck
Knock out of intestinal Cdx2 produces different effects depending upon the developmental stage at which this occurs. Early in development it produces histologically ordered stomach mucosa in the midgut. Conditional inactivation of Cdx2 in adult intestinal epithelium, as well as specifically in the Lgr5-positive stem cells, of adult mice allows long-term survival of the animals but fails to produce this phenotype. Instead, the endodermal cells exhibit cell-autonomous expression of gastric genes in an intestinal setting that is not accompanied by mesodermal expression of Barx1, which is necessary for gastric morphogenesis. Cdx2-negative endodermal cells also fail to express Sox2, a marker of gastric morphogenesis. Maturation of the stem cell niche thus appears to be associated with loss of ability to express positional information cues that are required for normal stomach development. Cdx2-negative intestinal crypts produce subsurface cystic vesicles, whereas untargeted crypts hypertrophy to later replace the surface epithelium. These observations are supported by studies involving inactivation of Cdx2 in intestinal crypts cultured in vitro. This abolishes their ability to form long-term growing intestinal organoids that differentiate into intestinal phenotypes. We conclude that expression of Cdx2 is essential for differentiation of gut stem cells into any of the intestinal cell types, but they maintain a degree of cell-autonomous plasticity that allows them to switch on a variety of gastric genes.