Jacqueline E. Day
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacqueline E. Day.
Nature Structural & Molecular Biology | 2011
Jens Hausmann; Satwik Kamtekar; Evangelos Christodoulou; Jacqueline E. Day; Tao Wu; Zachary Fulkerson; Harald M. H. G. Albers; Laurens A. van Meeteren; Anna J. S. Houben; Leonie van Zeijl; Silvia Jansen; Maria Andries; Troii Hall; Lyle E. Pegg; Timothy E. Benson; Mobien Kasiem; Karl Harlos; Craig W. Vander Kooi; Susan S. Smyth; Huib Ovaa; Mathieu Bollen; Andrew J. Morris; Wouter H. Moolenaar; Anastassis Perrakis
Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B–like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.
Journal of Molecular Biology | 2010
Jill E. Chrencik; Akshay Patny; Iris K. Leung; Brian Korniski; Thomas L. Emmons; Troii Hall; Robin A. Weinberg; Jennifer A. Gormley; Jennifer M. Williams; Jacqueline E. Day; Jeffrey L. Hirsch; James R. Kiefer; Joseph W. Leone; H. David Fischer; Cynthia D. Sommers; Horng-Chih Huang; E.J. Jacobsen; Ruth E. Tenbrink; Alfredo G. Tomasselli; Timothy E. Benson
Janus kinases (JAKs) are critical regulators of cytokine pathways and attractive targets of therapeutic value in both inflammatory and myeloproliferative diseases. Although the crystal structures of active JAK1 and JAK2 kinase domains have been reported recently with the clinical compound CP-690550, the structures of both TYK2 and JAK3 with CP-690550 have remained outstanding. Here, we report the crystal structures of TYK2, a first in class structure, and JAK3 in complex with PAN-JAK inhibitors CP-690550 ((3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile) and CMP-6 (tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one), both of which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to that observed in crystal structures of JAK1 and JAK2. Additionally, a complete thermodynamic characterization of JAK/CP-690550 complex formation was completed by isothermal titration calorimetry, indicating the critical role of the nitrile group from the CP-690550 compound. Finally, computational analysis using WaterMap further highlights the critical positioning of the CP-690550 nitrile group in the displacement of an unfavorable water molecule beneath the glycine-rich loop. Taken together, the data emphasize the outstanding properties of the kinome-selective JAK inhibitor CP-690550, as well as the challenges in obtaining JAK isozyme-selective inhibitors due to the overall structural and sequence similarities between the TYK2, JAK1, JAK2 and JAK3 isozymes. Nevertheless, subtle amino acid variations of residues lining the ligand-binding cavity of the JAK enzymes, as well as the global positioning of the glycine-rich loop, might provide the initial clues to obtaining JAK-isozyme selective inhibitors.
Bioorganic & Medicinal Chemistry Letters | 2009
John I. Trujillo; James R. Kiefer; Wei Huang; Atli Thorarensen; Li Xing; Nicole Caspers; Jacqueline E. Day; Karl J. Mathis; Kuniko K. Kretzmer; Beverley A. Reitz; Robin A. Weinberg; Roderick A. Stegeman; Ann D. Wrightstone; Lori Christine; Robert Compton; Xiong Li
The inhibition of PKC-zeta has been proposed to be a potential drug target for immune and inflammatory diseases. A series of 2-(6-phenyl-1H indazol-3-yl)-1H-benzo[d]imidazoles with initial high crossover to CDK-2 has been optimized to afford potent and selective inhibitors of protein kinase c-zeta (PKC-zeta). The determination of the crystal structures of key inhibitor:CDK-2 complexes informed the design and analysis of the series. The most selective and potent analog was identified by variation of the aryl substituent at the 6-position of the indazole template to give a 4-NH(2) derivative. The analog displays good selectivity over other PKC isoforms (alpha, betaII, gamma, delta, epsilon, mu, theta, eta and iota/lambda) and CDK-2, however it displays marginal selectivity against a panel of other kinases (37 profiled).
Bioorganic & Medicinal Chemistry Letters | 2010
Marvin Jay Meyers; Matthew James Pelc; Satwik Kamtekar; Jacqueline E. Day; Gennadiy I. Poda; Molly K. Hall; Marshall L. Michener; Beverly A. Reitz; Karl J. Mathis; Betsy S. Pierce; Mihir D. Parikh; Deborah A. Mischke; Scott A. Long; John J. Parlow; David R. Anderson; Atli Thorarensen
The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.
Journal of Medicinal Chemistry | 2017
Katherine L. Lee; Catherine M. Ambler; David R. Anderson; Brian P. Boscoe; Andrea G Bree; Joanne Brodfuehrer; Jeanne S. Chang; Chulho Choi; Seung Won Chung; Kevin J. Curran; Jacqueline E. Day; Christoph Martin Dehnhardt; Ken Dower; Susan E. Drozda; Richard K. Frisbie; Lori Krim Gavrin; Joel Adam Goldberg; Seungil Han; Martin Hegen; David Hepworth; Heidi R. Hope; Satwik Kamtekar; Iain Kilty; Arthur Lee; Lih-Ling Lin; Frank Lovering; Michael Dennis Lowe; John Paul Mathias; Heidi M Morgan; Elizabeth Murphy
Through fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.
ACS Medicinal Chemistry Letters | 2010
Chris P. Carron; John I. Trujillo; Kirk L. Olson; Wei Huang; Bruce C. Hamper; Tom Dice; Bradley E. Neal; Matthew James Pelc; Jacqueline E. Day; Douglas C. Rohrer; James R. Kiefer; Joseph B. Moon; Barbara Ann Schweitzer; Tanisha D. Blake; Steve R. Turner; Rhonda S. Woerndle; Brenda L. Case; Christine P. Bono; Vickie M. Dilworth; Christie L. Funckes-Shippy; Becky Hood; Gina M. Jerome; Christine M. Kornmeier; Melissa R. Radabaugh; Melanie L. Williams; Michael S. Davies; Craig D. Wegner; Dean Welsch; William M. Abraham; Chad J. Warren
Hematopoietic prostaglandin D synthase (HPGDS) is primarly expressed in mast cells, antigen-presenting cells, and Th-2 cells. HPGDS converts PGH2 into PGD2, a mediator thought to play a pivotal role in airway allergy and inflammatory processes. In this letter, we report the discovery of an orally potent and selective inhibitor of HPGDS that reduces the antigen-induced response in allergic sheep.
Protein Expression and Purification | 2010
Troii Hall; Thomas L. Emmons; Jill E. Chrencik; Jennifer A. Gormley; Robin A. Weinberg; Joseph W. Leone; Jeffrey L. Hirsch; Matthew Saabye; John F. Schindler; Jacqueline E. Day; Jennifer M. Williams; James R. Kiefer; Sandra Lightle; Melissa S. Harris; Siradanahalli Guru; H. David Fischer; Alfredo G. Tomasselli
Janus-associated kinases (JAKs) play critical roles in cytokine signaling, and have emerged as viable therapeutic targets in inflammation and oncology related diseases. To date, targeting JAK proteins with highly selective inhibitor compounds have remained elusive. We have expressed the active kinase domains for both JAK2 and JAK3 and devised purification protocols to resolve the non-, mono- (Y1007) and diphosphorylated (Y1007 and Y1008) states of JAK2 and non- and monophosphorylated states of JAK3 (Y980). An optimal purified protein yield of 20, 29 and 69mg per 20L cell culture was obtained for the three JAK2 forms, respectively, and 12.2 and 2.3mg per 10L fermentation for the two JAK3 forms allowing detailed biochemical and biophysical studies. To monitor the purification process we developed a novel HPLC activity assay where a sequential order of phosphorylation was observed whereby the first tyrosine residue was completely phosphorylated prior to phosphorylation of the tandem tyrosine residue. A Caliper-based microfluidics assay was used to determine the kinetic parameters (K(m) and k(cat)) for each phosphorylated state, showing that monophosphorylated (Y1007) JAK2 enzyme activity increased 9-fold over that of the nonphosphorylated species, and increased an additional 6-fold for the diphosphorylated (Y1007/Y1008) species, while phosphorylation of JAK3 resulted in a negligible increase in activity. Moreover, crystal structures have been generated for each isolated state of JAK2 and JAK3 with resolutions better than 2.4A. The generation of these reagents has enabled kinetic and structural characterization to inform the design of potent and selective inhibitors of the JAK family.
Bioorganic & Medicinal Chemistry Letters | 2012
John I. Trujillo; James R. Kiefer; Wei Huang; Jacqueline E. Day; Joseph B. Moon; Gina M. Jerome; Christine P. Bono; Christine M. Kornmeier; Melanie L. Williams; Cyrille Kuhn; Glen R. Rennie; Thomas A. Wynn; Christopher P. Carron; Atli Thorarensen
The inhibition of hH-PGDS has been proposed as a potential target for the development of anti-allergic and anti-inflammatory drugs. Herein we describe our investigation of the binding pocket of this important enzyme and our observation that two water molecules bind to our inhibitors and the enzyme. A series of compounds were prepared to the probe the importance of the water molecules in determining the binding affinity of the inhibitors to the enzyme. The study provides insight into the binding requirements for the design of potent hH-PGDS inhibitors.
Biochemical and Biophysical Research Communications | 2010
Brian Korniski; Arthur J. Wittwer; Thomas L. Emmons; Troii Hall; Stacy Brown; Ann D. Wrightstone; Jeffrey L. Hirsch; Jennifer A. Gormley; Robin A. Weinberg; Joseph W. Leone; Jacqueline E. Day; Jill E. Chrencik; Cynthia D. Sommers; H. David Fischer; Alfredo G. Tomasselli
The Janus kinase family consists of four members: JAK-1, -2, -3 and TYK-2. While JAK-2 and JAK-3 have been well characterized biochemically, there is little data on TYK-2. Recent work suggests that TYK-2 may play a critical role in the development of a number of inflammatory processes. We have carried out a series of biochemical studies to better understand TYK-2 enzymology and its inhibition profile, in particular how the TYK-2 phosphorylated forms differ from each other and from the other JAK family members. We have expressed and purified milligram quantities of the TYK-2 kinase domain (KD) to high purity and developed a method to separate the non-, mono- (pY(1054)) and di-phosphorylated forms of the enzyme. Kinetic studies (k(cat(app))/K(m(app))) indicated that phosphorylation of the TYK-2-KD (pY(1054)) increased the catalytic efficiency 4.4-fold compared to its non-phosphorylated form, while further phosphorylation to generate the di-phosphorylated enzyme imparted no further increase in activity. These results are in contrast to those obtained with the JAK-2-KD and JAK-3-KD, where little or no increase in activity occurred upon mono-phosphorylation, while di-phosphorylation resulted in a 5.1-fold increase in activity for the JAK-2-KD. Moreover, ATP-competitive inhibitors demonstrated 10-30-fold shifts in potency (K(i(app))) as a result of the TYK-2-KD phosphorylation state, while the shifts for JAK-3-KD were only 2-3-fold and showed little or no change for JAK-2-KD. Thus, the phosphorlyation state imparted differential effects on both activity and inhibition within the JAK family of kinases.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010
Jacqueline E. Day; Troii Hall; Lyle E. Pegg; Timothy E. Benson; Jens Hausmann; Satwik Kamtekar
Rat autotaxin has been cloned, expressed, purified to homogeneity and crystallized via hanging-drop vapour diffusion using PEG 3350 as precipitant and ammonium iodide and sodium thiocyanate as salts. The crystals diffracted to a maximum resolution of 2.05 A and belonged to space group P1, with unit-cell parameters a=53.8, b=63.3, c=70.5 A, alpha=98.8, beta=106.2, gamma=99.8 degrees. Preliminary X-ray diffraction analysis indicated the presence of one molecule per asymmetric unit, with a solvent content of 47%.