Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline Ho is active.

Publication


Featured researches published by Jacqueline Ho.


Journal of The American Society of Nephrology | 2008

Podocyte-Specific Loss of Functional MicroRNAs Leads to Rapid Glomerular and Tubular Injury

Jacqueline Ho; Kar Hui Ng; Seymour Rosen; Ales Dostal; Richard I. Gregory; Jordan A. Kreidberg

MicroRNAs (miRNAs) are in a class of endogenous, small, noncoding RNAs that exert their effects through posttranscriptional repression of specific target mRNAs. Although miRNAs have been implicated in the regulation of diverse biologic processes, little is known about miRNA function in the kidney. Here, mice lacking functional miRNAs in the developing podocyte were generated through podocyte-specific knockout of Dicer, an enzyme required for the production of mature miRNAs (Nphs2-Cre; Dicer(flx/flx)). Podocyte-specific loss of miRNAs resulted in significant proteinuria by 2 wk after birth, rapid progression of marked glomerular and tubular injury beginning at 3 wk, and death by 4 wk. Expression of the slit diaphragm proteins nephrin and podocin was decreased, and expression of the transcription factor WT1 was relatively unaffected. To identify miRNA-mRNA interactions that contribute to this phenotype, we profiled the glomerular expression of miRNAs; three miRNAs expressed in glomeruli were identified: mmu-miR-23b, mmu-miR-24, and mmu-miR-26a. These results suggest that miRNA function is dispensable for the initial development of glomeruli but is critical to maintain the glomerular filtration barrier.


Journal of The American Society of Nephrology | 2011

The Pro-Apoptotic Protein Bim Is a MicroRNA Target in Kidney Progenitors

Jacqueline Ho; Priyanka Pandey; Tobias Schatton; Sunder Sims-Lucas; Myda Khalid; Markus H. Frank; Sunny Hartwig; Jordan A. Kreidberg

Understanding the mechanisms that regulate nephron progenitors during kidney development should aid development of therapies for renal failure. MicroRNAs, which modulate gene expression through post-transcriptional repression of specific target mRNAs, contribute to the differentiation of stem cells, but their role in nephrogenesis is incompletely understood. Here, we found that the loss of miRNAs in nephron progenitors results in a premature depletion of this population during kidney development. Increased apoptosis and expression of the pro-apoptotic protein Bim accompanied this depletion. Profiling of miRNA expression during nephrogenesis identified several highly expressed miRNAs (miR-10a, miR-106b, miR-17-5p) in nephron progenitors that are either known or predicted to target Bim. We propose that modulation of apoptosis by miRNAs may determine congenital nephron endowment. Furthermore, our data implicate the pro-apoptotic protein Bim as a miRNA target in nephron progenitors.


BMC Systems Biology | 2011

Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease

Priyanka Pandey; Shan Qin; Jacqueline Ho; Jing Zhou; Jordan A. Kreidberg

BackgroundAutosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation throughout the kidney parenchyma. It is caused by mutations in either of two genes, PKD1 and PKD2. Mice that lack functional Pkd1 (Pkd1-/-), develop rapidly progressive cystic disease during embryogenesis, and serve as a model to study human ADPKD. Genome wide transcriptome reprogramming and the possible roles of micro-RNAs (miRNAs) that affect the initiation and progression of cyst formation in the Pkd1-/-have yet to be studied. miRNAs are small, regulatory non-coding RNAs, implicated in a wide spectrum of biological processes. Their expression levels are altered in several diseases including kidney cancer, diabetic nephropathy and PKD.ResultsWe examined the molecular pathways that modulate renal cyst formation and growth in the Pkd1-/-model by performing global gene-expression profiling in embryonic kidneys at days 14.5 and 17.5. Gene Ontology and gene set enrichment analysis were used to identify overrepresented signaling pathways in Pkd1-/-kidneys. We found dysregulation of developmental, metabolic, and signaling pathways (e.g. Wnt, calcium, TGF-β and MAPK) in Pkd1-/-kidneys. Using a comparative transcriptomics approach, we determined similarities and differences with human ADPKD: ~50% overlap at the pathway level among the mis-regulated pathways was observed. By using computational approaches (TargetScan, miRanda, microT and miRDB), we then predicted miRNAs that were suggested to target the differentially expressed mRNAs. Differential expressions of 9 candidate miRNAs, miRs-10a, -30a-5p, -96, -126-5p, -182, -200a, -204, -429 and -488, and 16 genes were confirmed by qPCR. In addition, 14 candidate miRNA:mRNA reciprocal interactions were predicted. Several of the highly regulated genes and pathways were predicted as targets of miRNAs.ConclusionsWe have described global transcriptional reprogramming during the progression of PKD in the Pkd1-/-model. We propose a model for the cascade of signaling events involved in cyst formation and growth. Our results suggest that several miRNAs may be involved in regulating signaling pathways in ADPKD. We further describe novel putative miRNA:mRNA signatures in ADPKD, which will provide additional insights into the pathogenesis of this common genetic disease in humans.


PLOS ONE | 2013

Endothelial Progenitors Exist within the Kidney and Lung Mesenchyme

Sunder Sims-Lucas; Caitlin Schaefer; Daniel Bushnell; Jacqueline Ho; Alison J. Logar; Edward V. Prochownik; George K. Gittes; Carlton M. Bates

The renal endothelium has been debated as arising from resident hemangioblast precursors that transdifferentiate from the nephrogenic mesenchyme (vasculogenesis) and/or from invading vessels (angiogenesis). While the Foxd1-positive renal cortical stroma has been shown to differentiate into cells that support the vasculature in the kidney (including vascular smooth muscle and pericytes) it has not been considered as a source of endothelial cell progenitors. In addition, it is unclear if Foxd1-positive mesenchymal cells in other organs such as the lung have the potential to form endothelium. This study examines the potential for Foxd1-positive cells of the kidney and lung to give rise to endothelial progenitors. We utilized immunofluorescence (IF) and fluorescence-activated cell sorting (FACS) to co-label Foxd1-expressing cells (including permanently lineage-tagged cells) with endothelial markers in embryonic and postnatal mice. We also cultured FACsorted Foxd1-positive cells, performed in vitro endothelial cell tubulogenesis assays and examined for endocytosis of acetylated low-density lipoprotein (Ac-LDL), a functional assay for endothelial cells. Immunofluorescence and FACS revealed that a subset of Foxd1-positive cells from kidney and lung co-expressed endothelial cell markers throughout embryogenesis. In vitro, cultured embryonic Foxd1-positive cells were able to differentiate into tubular networks that expressed endothelial cell markers and were able to endocytose Ac-LDL. IF and FACS in both the kidney and lung revealed that lineage-tagged Foxd1-positive cells gave rise to a significant portion of the endothelium in postnatal mice. In the kidney, the stromal-derived cells gave rise to a portion of the peritubular capillary endothelium, but not of the glomerular or large vessel endothelium. These findings reveal the heterogeneity of endothelial cell lineages; moreover, Foxd1-positive mesenchymal cells of the developing kidney and lung are a source of endothelial progenitors that are likely critical to patterning the vasculature.


Journal of The American Society of Nephrology | 2012

The Long and Short of MicroRNAs in the Kidney

Jacqueline Ho; Jordan A. Kreidberg

MicroRNAs (miRNAs) are a group of small, noncoding RNAs that act as novel regulators of gene expression through the post-transcriptional repression of their target mRNAs. miRNAs have been implicated in diverse biologic processes, and it is estimated that up to half of all transcripts are regulated by miRNAs. Recent studies also demonstrate a critical role for miRNAs in renal development, physiology, and pathophysiology. Understanding the function of miRNAs in the kidney may lead to innovative approaches to renal disease.


Journal of The American Society of Nephrology | 2014

MicroRNA-17~92 Is Required for Nephrogenesis and Renal Function

April K. Marrone; Donna B. Stolz; Sheldon Bastacky; Dennis Kostka; Andrew J. Bodnar; Jacqueline Ho

Deletion of all microRNAs (miRNAs) in nephron progenitors leads to premature loss of these cells, but the roles of specific miRNAs in progenitors have not been identified. Deletions in the MIR17HG cluster (miR-17~92 in mice), detected in a subset of patients with Feingold syndrome, represent the first miRNA mutations to be associated with a developmental defect in humans. Although MIR17HG is expressed in the developing kidney, and patients with Feingold syndrome caused by MYCN mutations have renal anomalies, it remains unclear to what extent MIR17HG contributes to renal development and function. To define the role of miR-17~92, we generated mice with a conditional deletion of miR-17~92 in nephron progenitors and their derivatives. The nephron progenitor population was preserved in these mice; however, this deletion impaired progenitor cell proliferation and reduced the number of developing nephrons. Postnatally, mutant mice developed signs of renal disease, including albuminuria by 6 weeks and focal podocyte foot process effacement and glomerulosclerosis at 3 months. Taken together, these data support a role for this miRNA cluster in renal development, specifically in the regulation of nephron development, with subsequent consequences for renal function in adult mice.


Pediatric Nephrology | 2013

MicroRNAs in renal development

Jacqueline Ho; Jordan A. Kreidberg

The discovery of microRNAs (miRNAs) as novel regulators of gene expression has led to a marked change in how gene regulation is viewed, with important implications for development and disease. MiRNAs are endogenous, small, noncoding RNAs that largely repress their target mRNAs post-transcriptionally. The regulation of gene expression by miRNAs represents an evolutionarily conserved mechanism that is broadly applicable to most biological processes. Recent studies have begun to define the role of miRNAs in different cell lineages during kidney development, and to implicate specific miRNAs in developmental and pathophysiological processes in the kidney. This review will focus on novel insights into the role(s) of miRNAs in kidney development, and discuss the implications for pediatric renal disease.


American Journal of Physiology-renal Physiology | 2015

Muc1 is protective during kidney ischemia-reperfusion injury

Núria M. Pastor-Soler; Timothy A. Sutton; Henry E. Mang; Sandra J. Gendler; Cathy S. Madsen; Sheldon Bastacky; Jacqueline Ho; Mohammad M. Al-bataineh; Kenneth R. Hallows; Sucha Singh; Satdarshan P. Monga; Hanako Kobayashi; Volker H. Haase; Rebecca P. Hughey

Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI. Whereas Muc1 was localized on the apical surface of the thick ascending limb, distal convoluted tubule, and collecting duct in the kidneys of sham-treated mice, Muc1 appeared in the cytoplasm and nucleus of all tubular epithelia during IRI. Muc1 was induced during IRI, and Muc1 transcripts and protein were also present in recovering proximal tubule cells. Kidney damage was worse and recovery was blocked during IRI in Muc1 knockout mice compared with congenic control mice. Muc1 knockout mice had reduced levels of HIF-1α, reduced or aberrant induction of HIF-1 target genes involved in the shift of glucose metabolism to glycolysis, and prolonged activation of AMP-activated protein kinase, indicating metabolic stress. Muc1 clearly plays a significant role in enhancing the HIF protective pathway during ischemic insult and recovery in kidney epithelia, providing a new target for developing therapies to treat AKI. Moreover, our data support a role specifically for HIF-1 in epithelial protection of the kidney during IRI as Muc1 is present only in tubule epithelial cells.


Pediatric Nephrology | 2014

MicroRNAs: potential regulators of renal development genes that contribute to CAKUT

April K. Marrone; Jacqueline Ho

Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of childhood chronic kidney disease (CKD). While mutations in several renal development genes have been identified as causes for CAKUT, most cases have not yet been linked to known mutations. Furthermore, the genotype–phenotype correlation is variable, suggesting that there might be additional factors that have an impact on the severity of CAKUT. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level, and are involved in many developmental processes. Although little is known about the function of specific miRNAs in kidney development, several have recently been shown to regulate the expression of, and/or are regulated by, crucial renal development genes present in other organ systems. In this review, we discuss how miRNA regulation of common developmental signaling pathways may be applicable to renal development. We focus on genes that are known to contribute to CAKUT in humans, for which miRNA interactions in other contexts have been identified, with miRNAs that are present in the kidney. We hypothesize that miRNA-mediated processes might play a role in kidney development through similar mechanisms, and speculate that genotypic variations in these small RNAs or their targets could be associated with CAKUT.


Physiological Reports | 2015

Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival

Yu Leng Phua; Jessica Chu; April K. Marrone; Andrew J. Bodnar; Sunder Sims-Lucas; Jacqueline Ho

MicroRNAs are small noncoding RNAs that post‐transcriptionally regulate mRNA levels. While previous studies have demonstrated that miRNAs are indispensable in the nephron progenitor and ureteric bud lineage, little is understood about stromal miRNAs during kidney development. The renal stroma (marked by expression of FoxD1) gives rise to the renal interstitium, a subset of peritubular capillaries, and multiple supportive vascular cell types including pericytes and the glomerular mesangium. In this study, we generated FoxD1GC;Dicerfl/fl transgenic mice that lack miRNA biogenesis in the FoxD1 lineage. Loss of Dicer activity resulted in multifaceted renal anomalies including perturbed nephrogenesis, expansion of nephron progenitors, decreased renin‐expressing cells, fewer smooth muscle afferent arterioles, and progressive mesangial cell loss in mature glomeruli. Although the initial lineage specification of FoxD1+ stroma was not perturbed, both the glomerular mesangium and renal interstitium exhibited ectopic apoptosis, which was associated with increased expression of Bcl2l11 (Bim) and p53 effector genes (Bax, Trp53inp1, Jun, Cdkn1a, Mmp2, and Arid3a). Using a combination of high‐throughput miRNA profiling of the FoxD1+‐derived cells and mRNA profiling of differentially expressed transcripts in FoxD1GC;Dicerfl/fl kidneys, at least 72 miRNA:mRNA target interactions were identified to be suppressive of the apoptotic program. Together, the results support an indispensable role for stromal miRNAs in the regulation of apoptosis during kidney development.

Collaboration


Dive into the Jacqueline Ho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Leng Phua

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunny Hartwig

University of Prince Edward Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis Kostka

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge