Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline K. Limberg is active.

Publication


Featured researches published by Jacqueline K. Limberg.


Journal of Applied Physiology | 2010

α-Adrenergic control of blood flow during exercise: effect of sex and menstrual phase

Jacqueline K. Limberg; Marlowe W. Eldridge; Lester T. Proctor; Joshua J. Sebranek; William G. Schrage

Sex differences exist in autonomic control of the cardiovascular system. This study was designed to directly test sex or female menstrual phase-related differences in α-adrenergic control of blood flow during exercise. We hypothesized that women would exhibit reduced α-adrenergic vasoconstriction compared with men during exercise; in addition, women would constrict less during the early luteal than the early follicular phase of the female menses. Young men (n = 10) were studied once and women (n = 9) studied twice, once during the early follicular phase and once during the early luteal phase of female menses. We measured forearm blood flow (FBF; Doppler ultrasound of the brachial artery) during rest and steady-state dynamic exercise (15 and 30% of maximal voluntary contraction, 20 contractions/min). A brachial artery catheter was inserted for the local administration of α-adrenergic agonists [phenylephrine (PE; α(1)) or clonidine (CL; α(2))]. Blood flow responses to exercise [forearm vascular conductance (FVC)] were similar between all groups. At rest, infusion of PE or CL decreased FVC in all groups (40-60% reduction). Vasoconstriction to PE was abolished in all groups at 15 and 30% exercise intensity. Vasoconstriction to CL was reduced at 15% and abolished at 30% intensity in all groups; women had less CL-induced constriction during the early luteal than early follicular phase (P < 0.017, 15% intensity). These results indicate that vasodilator responses to forearm exercise are comparable between men and women and are achieved through similar paths of α-adrenergic vascular control at moderate intensities; this control may differ at low intensities specific to the female menstrual phase.


Journal of Applied Physiology | 2010

Roles of nitric oxide synthase and cyclooxygenase in leg vasodilation and oxygen consumption during prolonged low-intensity exercise in untrained humans

William G. Schrage; Brad W. Wilkins; Christopher P. Johnson; John H. Eisenach; Jacqueline K. Limberg; Niki M. Dietz; Timothy B. Curry; Michael J. Joyner

The vasodilator signals regulating muscle blood flow during exercise are unclear. We tested the hypothesis that in young adults leg muscle vasodilation during steady-state exercise would be reduced independently by sequential pharmacological inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) with NG-nitro-L-arginine methyl ester (L-NAME) and ketorolac, respectively. We tested a second hypothesis that NOS and COX inhibition would increase leg oxygen consumption (VO2) based on the reported inhibition of mitochondrial respiration by nitric oxide. In 13 young adults, we measured heart rate (ECG), blood pressure (femoral venous and arterial catheters), blood gases, and venous oxygen saturation (indwelling femoral venous oximeter) during prolonged (25 min) steady-state dynamic knee extension exercise (60 kick/min, 19 W). Leg blood flow (LBF) was determined by Doppler ultrasound of the femoral artery. Whole body VO2 was measured, and leg VO2 was calculated from blood gases and LBF. Resting intra-arterial infusions of acetylcholine (ACh) and nitroprusside (NTP) tested inhibitor efficacy. Leg vascular conductance (LVC) to ACh was reduced up to 53±4% by L-NAME+ketorolac infusion, and the LVC responses to NTP were unaltered. Exercise increased LVC from 4±1 to 33.1±2 ml.min(-1).mmHg(-1) and tended to decrease after L-NAME infusion (31±2 ml.min(-1).mmHg(-1), P=0.09). With subsequent administration of ketorolac LVC decreased to 29.6±2 ml.min(-1).mmHg(-1) (P=0.02; n=9). While exercise continued, LVC returned to control values (33±2 ml.min(-1).mmHg(-1)) within 3 min, suggesting involvement of additional vasodilator mechanisms. In four additional subjects, LVC tended to decrease with L-NAME infusion alone (P=0.08) but did not demonstrate the transient recovery. Whole body and leg VO2 increased with exercise but were not altered by L-NAME or L-NAME+ketorolac. These data indicate a modest role for NOS- and COX-mediated vasodilation in the leg of exercising humans during prolonged steady-state exercise, which can be restored acutely. Furthermore, NOS and COX do not appear to influence muscle VO2 in untrained healthy young adults.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Microvascular function in younger adults with obesity and metabolic syndrome: role of oxidative stress

Jacqueline K. Limberg; John W. Harrell; Rebecca E. Johansson; Marlowe W. Eldridge; Lester T. Proctor; Joshua J. Sebranek; William G. Schrage

Older adults with cardiovascular disease exhibit microvascular dysfunction and increased levels of reactive oxygen species (ROS). We hypothesized that microvascular impairments begin early in the disease process and can be improved by scavenging ROS. Forearm blood flow (Doppler ultrasound) was measured in 45 young (32 ± 2 yr old) adults (n = 15/group) classified as lean, obese, and metabolic syndrome (MetSyn). Vasodilation in response to endothelial (ACh) and vascular smooth muscle [nitroprusside (NTP) and epoprostenol (Epo)] agonists was tested before and after intra-arterial infusion of ascorbic acid to scavenge ROS. Vasodilation was assessed as a rise in relative vascular conductance (ml·min(-1)·dl(-1)·100 mmHg(-1)). ACh and NTP responses were preserved (P = 0.825 and P = 0.924, respectively), whereas Epo responses were lower in obese and MetSyn adults (P < 0.05) than in lean controls. Scavenging of ROS via infusion of ascorbic acid resulted in an increase in ACh-mediated (P < 0.001) and NTP-mediated (P < 0.001) relative vascular conductance across all groups, suggesting that oxidative stress influences vascular responsiveness in adults with and without overt cardiovascular disease risk. Ascorbic acid had no effect on Epo-mediated vasodilation (P = 0.267). These results suggest that obese and MetSyn adults exhibit preserved endothelium-dependent vasodilation with reduced dependence on prostacyclin and are consistent with an upregulation of compensatory vascular control mechanisms.


Journal of Applied Physiology | 2010

Muscle blood flow responses to dynamic exercise in young obese humans

Jacqueline K. Limberg; Michael D. De Vita; Gregory M. Blain; William G. Schrage

Exercise is a common nonpharmacological way to combat obesity; however, no studies have systematically tested whether obese humans exhibit reduced skeletal muscle blood flow during dynamic exercise. We hypothesized that exercise-induced blood flow to skeletal muscle would be lower in young healthy obese subjects (body mass index of >30 kg/m(2)) compared with lean subjects (body mass index of <25 kg/m(2)). We measured blood flow (Doppler Ultrasound of the brachial and femoral arteries), blood pressure (auscultation, Finapress), and heart rate (ECG) during rest and two forms of single-limb, steady-state dynamic exercise: forearm exercise (20 contractions/min at 4, 8, and 12 kg) and leg exercise (40 kicks/min at 7 and 14 W). Forearm exercise increased forearm blood flow (FBF) similarly in both groups (P > 0.05; obese subjects n = 9, lean subjects n = 9). When FBF was normalized for perfusion pressure, forearm vascular conductance was not different between groups at increasing workloads (P > 0.05). Leg exercise increased leg blood flow (LBF) similarly in both groups (P > 0.05; obese subjects n = 10, lean subjects n = 12). When LBF was normalized for perfusion pressure, leg vascular conductance was not different between groups at increasing workloads (P > 0.05). These results were confirmed when relative blood flow was expressed at average relative workloads. In conclusion, our results show that obese subjects exhibited preserved FBF and LBF during dynamic exercise.


Hypertension | 2015

Effect of Bilateral Carotid Body Resection on Cardiac Baroreflex Control of Blood Pressure During Hypoglycemia

Jacqueline K. Limberg; Jennifer L. Taylor; Michael T. Mozer; Simmi Dube; Ananda Basu; Rita Basu; Robert A. Rizza; Timothy B. Curry; Michael J. Joyner; Erica A. Wehrwein

Hypoglycemia results in a reduction in cardiac baroreflex sensitivity and a shift in the baroreflex working range to higher heart rates. This effect is mediated, in part, by the carotid chemoreceptors. Therefore, we hypothesized hypoglycemia-mediated changes in baroreflex control of heart rate would be blunted in carotid body–resected patients when compared with healthy controls. Five patients with bilateral carotid body resection for glomus tumors and 10 healthy controls completed a 180-minute hyperinsulinemic, hypoglycemic (≈3.3 mmol/L) clamp. Changes in heart rate, blood pressure, and spontaneous cardiac baroreflex sensitivity were assessed. Baseline baroreflex sensitivity was not different between groups (P>0.05). Hypoglycemia resulted in a reduction in baroreflex sensitivity in both the groups (main effect of time, P<0.01) and responses were lower in resected patients when compared with controls (main effect of group, P<0.05). Hypoglycemia resulted in large reductions in systolic (−17±7 mm Hg) and mean (−14±5 mm Hg) blood pressure in resected patients that were not observed in controls (interaction of group and time, P<0.05). Despite lower blood pressures, increases in heart rate with hypoglycemia were blunted in resected patients (interaction of group and time, P<0.01). Major novel findings from this study demonstrate that intact carotid chemoreceptors are essential for increasing heart rate and maintaining arterial blood pressure during hypoglycemia in humans. These data support a contribution of the carotid chemoreceptors to blood pressure control and highlight the potential widespread effects of carotid body resection in humans.


Acta Physiologica | 2012

Rapid onset vasodilatation is blunted in obese humans.

Gregory M. Blain; Jacqueline K. Limberg; G. F. Mortensen; William G. Schrage

Aim:  Conduit artery function in obese humans is frequently assessed at rest, but very little is known about resistance artery function in response to muscle contraction. We tested the hypothesis that obese adults will exhibit reduced contraction‐induced rapid onset vasodilatation. Single and brief forearm contractions were used to isolate the local effects of muscle contraction on the forearm vasodilatory response, independent of systemic haemodynamic and sympathetic neural influence.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Neurovascular Control of Blood Pressure is Influenced by Aging, Sex, and Sex Hormones

Sarah E. Baker; Jacqueline K. Limberg; Sushant M. Ranadive; Michael J. Joyner

In this review, we highlight that the relationship between muscle sympathetic nerve activity (MSNA) and mean arterial pressure is complex, differs by sex, and changes with age. In young men there is an inverse relationship between MSNA and cardiac output where high MSNA is compensated for by low cardiac output. This inverse relationship is not seen in older men. In young women sympathetic vasoconstriction is offset by β-adrenoreceptor mediated vasodilation, limiting the ability of young women to maintain blood pressure in response to orthostatic stress. However, β-mediated dilation in women is attenuated with age, leading to unopposed α-adrenergic vasoconstriction and a rise in the direct transduction of MSNA into increases in blood pressure. We propose that these changes with age and menopausal status are major contributing factors in the increased prevalence of hypertension in older women. In addition to aging, we highlight that changes in sex hormones in young women (across the menstrual cycle, with oral contraceptive use, or with pregnancy) influence MSNA and the transduction of MSNA into increases in blood pressure. It is likely that the β-adrenergic receptors and/or changes in baroreflex sensitivity play a large role in these sex differences and changes with alterations in sex hormones.


Experimental Physiology | 2014

Role of the carotid body chemoreceptors in baroreflex control of blood pressure during hypoglycaemia in humans.

Jacqueline K. Limberg; Jennifer L. Taylor; Simmi Dube; Rita Basu; Ananda Basu; Michael J. Joyner; Erica A. Wehrwein

What is the central question of this study? Activation of the carotid body chemoreceptors with hypoxia alters baroreceptor‐mediated responses in humans. We aimed to examine whether this relationship can be translated to other chemoreceptor stimuli (i.e. hypoglycaemia). What is the main finding and its importance? We show that hypoglycaemia‐mediated changes in heart rate variability and baroreflex sensitivity cannot be attributed exclusively to the carotid chemoreceptors; however, the chemoreceptors play a role in resetting the baroreflex working range during hypoglycaemia. These results provide a potential mechanism for impaired glycaemic control and increased risk of cardiac arrhythmias in patients with carotid chemoreceptor overactivity (i.e. sleep apnoea).


Physiological Reports | 2017

Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults.

Lauren P. Newhouse; Michael J. Joyner; Timothy B. Curry; Marcello C. Laurenti; Chiara Dalla Man; Claudio Cobelli; Adrian Vella; Jacqueline K. Limberg

An independent association exists between sleep apnea and diabetes. Animal models suggest exposure to intermittent hypoxia, a consequence of sleep apnea, results in altered glucose metabolism and fasting hyperglycemia. However, it is unknown if acute exposure to intermittent hypoxia increases glucose concentrations in nondiabetic humans. We hypothesized plasma glucose would be increased from baseline following 3 h of intermittent hypoxia in healthy humans independent of any effect on insulin sensitivity. Eight (7M/1F, 21–34 years) healthy subjects completed two study visits randomized to 3 h of intermittent hypoxia or continuous normoxia, followed by an oral glucose tolerance test. Intermittent hypoxia consisted of 25 hypoxic events per hour where oxygen saturation (SpO2) was significantly reduced (Normoxia: 97 ± 1%, Hypoxia: 90 ± 2%, P < 0.01). Venous plasma glucose concentrations were measured on both visits before and after the 3 h protocol. No changes in plasma glucose were observed from baseline after 3 h of continuous normoxia (5.1 ± 0.2 vs. 5.1 ± 0.1 mmol/L, P > 0.05). In contrast, circulating glucose concentrations were increased after 3 h of intermittent hypoxia when compared to baseline (5.0 ± 0.2 vs. 5.3 ± 0.2 mmol/L, P = 0.01). There were no detectable changes in insulin sensitivity following intermittent hypoxia when compared to continuous normoxia, as assessed by the oral glucose tolerance test (P > 0.05). Circulating glucose is increased after 3 h of intermittent hypoxia in healthy humans, independent of any lasting changes in insulin sensitivity. These novel findings could explain, in part, the high prevalence of diabetes in patients with sleep apnea and warrant future studies to identify underlying mechanisms.


Medical Hypotheses | 2014

Is Insulin the new Intermittent Hypoxia

Jacqueline K. Limberg; Timothy B. Curry; Nanduri R. Prabhakar; Michael J. Joyner

The sympathoexcitatory effects of insulin are well-established, although the exact mechanisms by which insulin stimulates the sympathetic nervous system are not completely understood. The majority of research supports a primary role for the central nervous system in the gradual and sustained rise in muscle sympathetic nerve activity (MSNA) in response to hyperinsulinemia; in addition, recent studies in animals suggests carotid body chemoreceptors respond to increases in systemic insulin levels. Intermittent activation of the carotid chemoreceptors, similar to that seen in patients with sleep apnea, can result in sensory long term facilitation and may contribute to the observed rise in baseline MSNA in this population. Consistent with this idea, insulin exposure results in sustained increases in MSNA that persist even when plasma insulin levels return to baseline. We propose the carotid chemoreceptors contribute to insulin-mediated sympathoexcitation and the persistent rise in MSNA in patients with sustained hyperinsulinemia. If the carotid chemoreceptors sense and respond to changes in systemic insulin levels, these organs may provide a viable target for the treatment of disorders known to exhibit sustained hyperinsulinemia and sympathoexcitation including, but not limited to, obesity, hypertension, sleep apnea, metabolic syndrome, cardiovascular disease, and diabetes.

Collaboration


Dive into the Jacqueline K. Limberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William G. Schrage

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua J. Sebranek

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Rebecca E. Johansson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

John W. Harrell

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lester T. Proctor

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Marlowe W. Eldridge

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory M. Blain

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge