Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline K. Vander Schoor is active.

Publication


Featured researches published by Jacqueline K. Vander Schoor.


Plant Physiology | 2007

Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs

Valérie Hecht; Claire L. Knowles; Jacqueline K. Vander Schoor; Lim Chee Liew; Sarah Jones; Misty J.M. Lambert; James L. Weller

Genes controlling the transition to flowering have been studied in several species, including Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but have not yet received much attention in legumes. Here, we describe a new allelic series of late-flowering, photoperiod-insensitive mutants in the pea (Pisum sativum) LATE BLOOMER1 (LATE1) gene and show that LATE1 is an ortholog of Arabidopsis GIGANTEA. Mutants display defects in phytochrome B-dependent deetiolation under red light and in the diurnal regulation of pea homologs of several Arabidopsis circadian clock genes, including TIMING OF CAB1, EARLY FLOWERING4, and CIRCADIAN CLOCK ASSOCIATED1/LATE ELONGATED HYPOCOTYL. LATE1 itself shows strongly rhythmic expression with a small but distinct acute peak following dark-to-light transfer. Mutations in LATE1 prevent the induction of a FLOWERING LOCUS T (FT) homolog FTL in long days but cause only minor alteration to the rhythmic expression pattern of the only known group Ia CONSTANS homolog COLa. The late-flowering phenotype of late1 mutants can be completely rescued by grafting to the wild type, but this rescue is not associated with a significant increase in FTL transcript level in shoot apices. Genetic interactions of late1 with the photoperiod-insensitive, early-flowering sterile nodes (sn) mutant and impairment of the LATE1 diurnal expression rhythm in sn plants suggest that SN may also affect the circadian clock. These results show that several functions of Arabidopsis GIGANTEA are conserved in its pea ortholog and demonstrate that genetic pathways for photoperiodic flowering are likely to be conserved between these two species. They also suggest that in addition to its role in the floral transition, LATE1 also acts throughout reproductive development.


The Plant Cell | 2011

The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod

Valérie Hecht; Rebecca E. Laurie; Jacqueline K. Vander Schoor; Stephen Ridge; Claire L. Knowles; Lim Chee Liew; Frances C. Sussmilch; Ian C. Murfet; James L. Weller

The pea flowering gene GIGAS regulates a mobile flowering signal and is essential for flowering under long days but not for the ability to respond to photoperiod. This study characterizes the FLOWERING LOCUS T (FT) gene family in pea, identifies one gene (FTa1) as GIGAS, and associates another gene (FTb2) with a second mobile signal and a broader role in photoperiod responsiveness. Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A conserved molecular basis for photoperiod adaptation in two temperate legumes

James L. Weller; Lim Chee Liew; Valérie Hecht; Vinodan Rajandran; Rebecca E. Laurie; Stephen Ridge; Bénédicte Wenden; Jacqueline K. Vander Schoor; Odile Jaminon; Christelle Blassiau; Marion Dalmais; Catherine Rameau; Abdelhafid Bendahmane; Isabelle Lejeune-Hénaut

Legumes were among the first plant species to be domesticated, and accompanied cereals in expansion of agriculture from the Fertile Crescent into diverse environments across the Mediterranean basin, Europe, Central Asia, and the Indian subcontinent. Although several recent studies have outlined the molecular basis for domestication and eco-geographic adaptation in the two main cereals from this region, wheat and barley, similar questions remain largely unexplored in their legume counterparts. Here we identify two major loci controlling differences in photoperiod response between wild and domesticated pea, and show that one of these, HIGH RESPONSE TO PHOTOPERIOD (HR), is an ortholog of EARLY FLOWERING 3 (ELF3), a gene involved in circadian clock function. We found that a significant proportion of flowering time variation in global pea germplasm is controlled by HR, with a single, widespread functional variant conferring altered circadian rhythms and the reduced photoperiod response associated with the spring habit. We also present evidence that ELF3 has a similar role in lentil, another major legume crop, with a distinct functional variant contributing to reduced photoperiod response in cultivars widely deployed in short-season environments. Our results identify the factor likely to have permitted the successful prehistoric expansion of legume cultivation to Northern Europe, and define a conserved genetic basis for major adaptive changes in flowering phenology and growth habit in an important crop group.


The Plant Cell | 2009

Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway.

James L. Weller; Valérie Hecht; Jacqueline K. Vander Schoor; Sandra E. Davidson; John Ross

Light regulation of gibberellin (GA) biosynthesis occurs in several species, but the signaling pathway through which this occurs has not been clearly established. We have isolated a new pea (Pisum sativum) mutant, long1, with a light-dependent elongated phenotype that is particularly pronounced in the epicotyl and first internode. The long1 mutation impairs signaling from phytochrome and cryptochrome photoreceptors and interacts genetically with a mutation in LIP1, the pea ortholog of Arabidopsis thaliana COP1. Mutant long1 seedlings show a dramatic impairment in the light regulation of active GA levels and the expression of several GA biosynthetic genes, most notably the GA catabolism gene GA2ox2. The long1 mutant carries a nonsense mutation in a gene orthologous to the ASTRAY gene from Lotus japonicus, a divergent ortholog of the Arabidopsis bZIP transcription factor gene HY5. Our results show that LONG1 has a central role in mediating the effects of light on GA biosynthesis in pea and demonstrate the importance of this regulation for appropriate photomorphogenic development. By contrast, LONG1 has no effect on GA responsiveness, implying that interactions between LONG1 and GA signaling are not a significant component of the molecular framework for light–GA interactions in pea.


Journal of Experimental Botany | 2009

Update on the genetic control of flowering in garden pea

James L. Weller; Valérie Hecht; Lim Chee Liew; Frances C. Sussmilch; Bénédicte Wenden; Claire L. Knowles; Jacqueline K. Vander Schoor

The garden pea has been a model for the genetics of flowering for several decades and numerous flowering loci have been identified, but until recently little was known about the molecular nature of these loci. This paper presents an update on recent work on the molecular genetics of flowering in pea, outlining progress in gene and mutant isolation, expression analyses, grafting and other physiological studies, and candidate gene assessment. Work so far has led to the identification of the LATE1 and DNE loci as orthologues of Arabidopsis GIGANTEA and ELF4, respectively, and candidate genes for several other loci are being evaluated. Expression analysis of an expanded FT-like gene family suggests a more complex role for this group of genes. These results provide the first insight into the circadian clock, photoperiod response mechanism, and mobile signals in pea, and identify both conserved and divergent features in comparison with Arabidopsis.


New Phytologist | 2008

Flowering phenology in a species‐rich temperate grassland is sensitive to warming but not elevated CO2

Mark J. Hovenden; Karen Wills; Jacqueline K. Vander Schoor; Amity L. Williams; Paul C. D. Newton

* Flowering is a critical stage in plant life cycles, and changes might alter processes at the species, community and ecosystem levels. Therefore, likely flowering-time responses to global change drivers are needed for predictions of global change impacts on natural and managed ecosystems. * Here, the impact of elevated atmospheric CO2 concentration ([CO2]) (550 micromol mol(-1)) and warming (+2 masculineC) is reported on flowering times in a native, species-rich, temperate grassland in Tasmania, Australia in both 2004 and 2005. * Elevated [CO2] did not affect average time of first flowering in either year, only affecting three out of 23 species. Warming reduced time to first flowering by an average of 19.1 d in 2004, acting on most species, but did not significantly alter flowering time in 2005, which might be related to the timing of rainfall. Elevated [CO2] and warming treatments did not interact on flowering time. * These results show elevated [CO2] did not alter average flowering time or duration in this grassland; neither did it alter the response to warming. Therefore, flowering phenology appears insensitive to increasing [CO2] in this ecosystem, although the response to warming varies between years but can be strong.


The Plant Cell | 2009

DIE NEUTRALIS and LATE BLOOMER 1 Contribute to Regulation of the Pea Circadian Clock

Lim Chee Liew; Valérie Hecht; Rebecca E. Laurie; Claire L. Knowles; Jacqueline K. Vander Schoor; James L. Weller

The DIE NEUTRALIS (DNE) locus in garden pea (Pisum sativum) was previously shown to inhibit flowering under noninductive short-day conditions and to affect a graft-transmissible flowering signal. In this study, we establish that DNE has a role in diurnal and/or circadian regulation of several clock genes, including the pea GIGANTEA (GI) ortholog LATE BLOOMER 1 (LATE1) and orthologs of the Arabidopsis thaliana genes LATE ELONGATED HYPOCOTYL and TIMING OF CHLOROPHYLL A/B BINDING PROTEIN EXPRESSION 1. We also confirm that LATE1 participates in the clock and provide evidence that DNE is the ortholog of Arabidopsis EARLY FLOWERING4 (ELF4). Circadian rhythms of clock gene expression in wild-type plants under constant light were weaker in pea than in Arabidopsis, and a number of differences were also seen in the effects of both DNE/ELF4 and LATE1/GI on clock gene expression. Grafting studies suggest that DNE controls flowering at least in part through a LATE1-dependent mobile stimulus, and dne mutants show elevated expression of a FLOWERING LOCUS T homolog under short-day conditions. However, the early flowering of the dne mutant is not associated with altered expression of a previously described CONSTANS-like gene. Collectively, our results characterize the clock system and reveal its importance for photoperiod responsiveness in a model legume.


New Phytologist | 2008

Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland

Mark J. Hovenden; Paul C. D. Newton; Karen Wills; Jasmine K. Janes; Amity L. Williams; Jacqueline K. Vander Schoor; Michaela J. Nolan

In a water-limited system, the following hypotheses are proposed: warming will increase seedling mortality; elevated atmospheric CO2 will reduce seedling mortality by reducing transpiration, thereby increasing soil water availability; and longevity (i.e. whether a species is annual or perennial) will affect the response of a species to global changes. Here, these three hypotheses are tested by assessing the impact of elevated CO2 (550 micromol mol(-1) and warming (+2 degrees C) on seedling emergence, survivorship and establishment in an Australian temperate grassland from autumn 2004 to autumn 2007. Warming impacts on seedling survivorship were dependent upon species longevity. Warming reduced seedling survivorship of perennials through its effects on soil water potential but the seedling survivorship of annuals was reduced to a greater extent than could be accounted for by treatment effects on soil water potential. Elevated CO2 did not significantly affect seedling survivorship in annuals or perennials. These results show that warming will alter recruitment of perennial species by changing soil water potential but will reduce recruitment of annual species independent of any effects on soil moisture. The results also show that exposure to elevated CO2 does not make seedlings more resistant to dry soils.


Australian Journal of Botany | 2007

Flowering, seed production and seed mass in a species-rich temperate grassland exposed to FACE and warming

Mark J. Hovenden; Karen Wills; Jacqueline K. Vander Schoor; Rebecca E. Chaplin; Amity L. Williams; Michaela J. Nolan; Paul C. D. Newton

Long-term effects of climate change on plant communities must be mediated by reproductive and recruitment responses of component species. From spring 2003 until autumn 2006, we monitored flowering and seed-production responses to free air CO2 enrichment (FACE) and 2°C warming in a species-rich, nutrient-poor southern temperate grassland, by using the TasFACE experiment. There were no effects of either FACE or warming on the proportion of species flowering in any year. Flowering, seed production and seed mass were not significantly affected by FACE, warming or their interaction in most species. Some species, however, did respond significantly to simulated global changes. These responses generally were not governed by life history, but there were two distinct trends. First, warming increased the proportion of the population that flowered in perennial grasses but not in other species types. Second, flowering and seed production of both perennial woody dicots responded strongly to the interaction of FACE and warming, with Bossiaea prostrata producing most seeds in warmed FACE plots and Hibbertia hirsuta producing the most in unwarmed FACE plots. FACE increased seed mass 4-fold in the perennial C3 grass Elymus scaber (P < 0.01) but substantially reduced seed mass of the perennial C3 grass Austrodanthonia caespitosa (P < 0.02) and the perennial forb Hypochaeris radicata (P < 0.02), with the remainder of species unaffected. Our results indicate that warming and elevated CO2 had little effect on seed production in the temperate grassland ecosystem. The few significant affects there were, however, are likely to have substantial implications for community composition and structure.


Plant Physiology | 2015

Ethylene Signaling Influences Light-Regulated Development in Pea

James L. Weller; Eloise Foo; Valérie Hecht; Stephen Ridge; Jacqueline K. Vander Schoor; James B. Reid

A mutation that impairs ethylene response in pea reveals an interaction of light and ethylene signaling in the control of leaf expansion during deetiolation. Plant responses to light involve a complex network of interactions among multiple plant hormones. In a screen for mutants showing altered photomorphogenesis under red light, we identified a mutant with dramatically enhanced leaf expansion and delayed petal senescence. We show that this mutant exhibits reduced sensitivity to ethylene and carries a nonsense mutation in the single pea (Pisum sativum) ortholog of the ethylene signaling gene ETHYLENE INSENSITIVE2 (EIN2). Consistent with this observation, the ein2 mutation rescues the previously described effects of ethylene overproduction in mature phytochrome-deficient plants. In seedlings, ein2 confers a marked increase in leaf expansion under monochromatic red, far-red, or blue light, and interaction with phytochromeA, phytochromeB, and long1 mutants confirms that ein2 enhances both phytochrome- and cryptochrome-dependent responses in a LONG1-dependent manner. In contrast, minimal effects of ein2 on seedling development in darkness or high-irradiance white light show that ethylene is not limiting for development under these conditions. These results indicate that ethylene signaling constrains leaf expansion during deetiolation in pea and provide further evidence that down-regulation of ethylene production may be an important component mechanism in the broader control of photomorphogenic development by phytochrome and cryptochrome.

Collaboration


Dive into the Jacqueline K. Vander Schoor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Wills

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge