Jacqueline Schoumans
Karolinska University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacqueline Schoumans.
Journal of Medical Genetics | 2005
Jacqueline Schoumans; Claudia Ruivenkamp; Eva Holmberg; Mårten Kyllerman; Britt-Marie Anderlid; Magnus Nordenskjöld
Chromosomal aberrations are a common cause of multiple anomaly syndromes that include growth and developmental delay and dysmorphism. Novel high resolution, whole genome technologies, such as array based comparative genomic hybridisation (array-CGH), improve the detection rate of submicroscopic chromosomal abnormalities allowing re-investigation of cases where conventional cytogenetic techniques, Spectral karyotyping (SKY), and FISH failed to detect abnormalities. We performed a high resolution genome-wide screening for submicroscopic chromosomal rearrangements using array-CGH on 41 children with idiopathic mental retardation (MR) and dysmorphic features. The commercially available microarray from Spectral Genomics contained 2600 BAC clones spaced at approximately 1 Mb intervals across the genome. Standard chromosome analysis (>450 bands per haploid genome) revealed no chromosomal rearrangements. In addition, multi-subtelomeric FISH screening in 30 cases and SKY in 11 patients did not detect any abnormality. Using array-CGH we detected chromosomal imbalances in four patients (9.8%) ranging in size from 2 to 14 Mb. Large scale copy number variations were frequently observed. Array-CGH has become an important tool for the detection of chromosome aberrations and has the potential to identify genes involved in developmental delay and dysmorphism. Moreover, the detection of genomic imbalances of clinical significance will increase knowledge of the human genome by performing genotype-phenotype correlation.
European Journal of Human Genetics | 2007
Joris Vermeesch; Heike Fiegler; Nicole de Leeuw; Karoly Szuhai; Jacqueline Schoumans; Roberto Ciccone; Frank Speleman; Anita Rauch; Jill Clayton-Smith; Conny Van Ravenswaaij; Damien Sanlaville; Philippos C. Patsalis; Helen V. Firth; Koen Devriendt; Orsetta Zuffardi
Array-based whole genome investigation or molecular karyotyping enables the genome-wide detection of submicroscopic imbalances. Proof-of-principle experiments have demonstrated that molecular karyotyping outperforms conventional karyotyping with regard to detection of chromosomal imbalances. This article identifies areas for which the technology seems matured and areas that require more investigations. Molecular karyotyping should be part of the genetic diagnostic work-up of patients with developmental disorders. For the implementation of the technique for other constitutional indications and in prenatal diagnosis, more research is appropriate. Also, the article aims to provide best practice guidelines for the application of array comparative genomic hybridisation to ensure both technical and clinical quality criteria that will optimise and standardise results and reports in diagnostic laboratories. In short, both the specificity and the sensitivity of the arrays should be evaluated in every laboratory offering the diagnostic test. Internal and external quality control programmes are urgently needed to evaluate and standardise the test results between laboratories.
Journal of Medical Genetics | 2008
Damien L. Bruno; Devika Ganesamoorthy; Jacqueline Schoumans; Agnes Bankier; David Coman; Martin B. Delatycki; R. J. M. Gardner; Matthew Hunter; Paul A. James; Peter Kannu; George McGillivray; Nicholas Pachter; Heidi Peters; Claudine Rieubland; Ravi Savarirayan; Ingrid E. Scheffer; Leslie J. Sheffield; Tiong Yang Tan; Susan M. White; Alison Yeung; Z Bowman; C Ngo; Kwong Wai Choy; V Cacheux; Lee H. Wong; David J. Amor; Howard R. Slater
Background: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. Methods: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. Results: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as “potentially pathogenic”. Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. Conclusions: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered “new syndromes” were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype–phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.
Human Genetics | 2014
Yvonne Schulz; Peter Wehner; Lennart Opitz; Gabriela Salinas-Riester; Ernie M.H.F. Bongers; Conny M. A. van Ravenswaaij-Arts; Josephine Wincent; Jacqueline Schoumans; Juergen Kohlhase; Annette Borchers; Silke Pauli
Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7Whi/+ and Chd7Whi/Whi) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7Whi/Whi embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the pathogenesis of this multiple malformation syndrome.
Clinical Genetics | 2008
Josephine Wincent; E Holmberg; Kerstin Strömland; Maria Soller; L Mirzaei; T Djureinovic; Kristina Lagerstedt Robinson; Britt-Marie Anderlid; Jacqueline Schoumans
CHARGE syndrome is a disorder characterized by Coloboma, Heart defect, Atresia choanae, Retarded growth and/or development, Genital hypoplasia and Ear anomalies. Heterozygous mutations in the chromodomain helicase DNA‐binding protein 7 (CHD7) gene have been identified in about 60% of individuals diagnosed with CHARGE syndrome. We performed a CHD7 mutation screening by direct exon sequencing in 28 index patients (26 sporadic cases, 1 familial case consisting of a brother and sister and 1 case consisting of monozygotic twins) diagnosed with CHARGE syndrome in order to determine the mutations in a cohort of Swedish CHARGE syndrome patients. The patients without a detectable CHD7 mutation, or with a missense mutation, were further investigated by multiplex ligation‐dependent probe amplification (MLPA) in order to search for intragenic deletions or duplications. Thirteen novel mutations and five previously reported mutations were detected. The mutations were scattered throughout the gene and included nonsense, frameshift and missense mutations as well as intragenic deletions. In conclusion, CHD7 mutations were detected in a large proportion (64%) of cases diagnosed with CHARGE syndrome. Screening for intragenic deletions with MLPA is recommended in cases where mutations are not found by sequencing. In addition, a CDH7 mutation was found in an individual without temporal bone malformation.
Behavior Genetics | 2012
Heidi Anthoni; Lara Sucheston; Barbara A. Lewis; Isabel Tapia-Páez; Xiaotang Fan; Marco Zucchelli; Mikko Taipale; Catherine M. Stein; Marie-Estelle Hokkanen; Eero Castrén; Bruce F. Pennington; Shelley D. Smith; Richard K. Olson; J. Bruce Tomblin; Gerd Schulte-Körne; Markus M. Nöthen; Johannes Schumacher; Bertram Müller-Myhsok; Per Hoffmann; Jeffrey W. Gilger; George W. Hynd; Jaana Nopola-Hemmi; Paavo H. T. Leppänen; Heikki Lyytinen; Jacqueline Schoumans; Magnus Nordenskjöld; Jason Spencer; Davor Stanic; Wah Chin Boon; Evan R. Simpson
Inspired by the localization, on 15q21.2 of the CYP19A1 gene in the linkage region of speech and language disorders, and a rare translocation in a dyslexic individual that was brought to our attention, we conducted a series of studies on the properties of CYP19A1 as a candidate gene for dyslexia and related conditions. The aromatase enzyme is a member of the cytochrome P450 super family, and it serves several key functions: it catalyzes the conversion of androgens into estrogens; during early mammalian development it controls the differentiation of specific brain areas (e.g. local estrogen synthesis in the hippocampus regulates synaptic plasticity and axonal growth); it is involved in sexual differentiation of the brain; and in songbirds and teleost fishes, it regulates vocalization. Our results suggest that variations in CYP19A1 are associated with dyslexia as a categorical trait and with quantitative measures of language and speech, such as reading, vocabulary, phonological processing and oral motor skills. Variations near the vicinity of its brain promoter region altered transcription factor binding, suggesting a regulatory role in CYP19A1 expression. CYP19A1 expression in human brain correlated with the expression of dyslexia susceptibility genes such as DYX1C1 and ROBO1. Aromatase-deficient mice displayed increased cortical neuronal density and occasional cortical heterotopias, also observed in Robo1−/− mice and human dyslexic brains, respectively. An aromatase inhibitor reduced dendritic growth in cultured rat neurons. From this broad set of evidence, we propose CYP19A1 as a candidate gene for human cognitive functions implicated in reading, speech and language.
Human Mutation | 2012
Annet Simons; Birgit Sikkema-Raddatz; Nicole de Leeuw; Nicole Claudia Konrad; Rosalind J. Hastings; Jacqueline Schoumans
Over the last three decades, cytogenetic analysis of malignancies has become an integral part of disease evaluation and prediction of prognosis or responsiveness to therapy. In most diagnostic laboratories, conventional karyotyping, in conjunction with targeted fluorescence in situ hybridization analysis, is routinely performed to detect recurrent aberrations with prognostic implications. However, the genetic complexity of cancer cells requires a sensitive genome‐wide analysis, enabling the detection of small genomic changes in a mixed cell population, as well as of regions of homozygosity. The advent of comprehensive high‐resolution genomic tools, such as molecular karyotyping using comparative genomic hybridization or single‐nucleotide polymorphism microarrays, has overcome many of the limitations of traditional cytogenetic techniques and has been used to study complex genomic lesions in, for example, leukemia. The clinical impact of the genomic copy‐number and copy‐neutral alterations identified by microarray technologies is growing rapidly and genome‐wide array analysis is evolving into a diagnostic tool, to better identify high‐risk patients and predict patients outcomes from their genomic profiles. Here, we review the added clinical value of an array‐based genome‐wide screen in leukemia, and discuss the technical challenges and an interpretation workflow in applying arrays in the acquired cytogenetic diagnostic setting. Hum Mutat 33:941–948, 2012.
Leukemia | 2005
Karpova Mb; Jacqueline Schoumans; Ingemar Ernberg; J‐I Henter; Magnus Nordenskjöld; Bengt Fadeel
1 Dimopoulos MA, Anagnostopoulos A, Weber D. Treatment of plasma cell dyscrasias with thalidomide and its derivates. J Clin Oncol 2003; 21: 4444–4454. 2 Cavenagh JD, Oakervee H. UK Myeloma Forum and the BCSH Haematology/Oncology Task Forces. Thalidomide in multiple myeloma: current status and future prospects. Br J Haematol 2003; 120: 18–26. 3 Kropff MH, Lang N, Bisping G, Domine N, Innig G, Hentrich M et al. Hyperfractionated cyclophosphamide in combination with pulsed dexamethasone and thalidomide (HyperCDT) in primary refractory or relapsed multiple myeloma. Br J Haematol 2003; 122: 607–616. 4 Barlogie B, Desikan R, Eddlemon P, Spencer T, Zeldis J, Munshi N et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001; 98: 492–494. 5 Yakoub-Agha I, Attal M, Dumontet C, Delannoy V, Moreau P, Berthou C et al. Thalidomide in patients with advanced multiple myeloma: a study of 83 patients – report of the Intergroupe Francophone du Myelome (IFM). Hematol J 2002; 3: 185–192. 6 Neben K, Moehler T, Benner A, Kraemer A, Egerer G, Ho AD et al. Dose-dependent effect of thalidomide on overall survival in relapsed multiple myeloma. Clin Cancer Res 2002; 8: 3377–3382. 7 Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Geyer SM, Iturria NL et al. Response rate, durability of response, and survival after thalidomide therapy for relapsed multiple myeloma. Mayo Clin Proc 2003; 78: 34–39. 8 Mileshkin L, Biagi JJ, Mitchell P, Underhill C, Grigg A, Bell R et al. Multicenter phase 2 trial of thalidomide in relapsed/refractory multiple myeloma: adverse prognostic impact of advanced age. Blood 2003; 102: 69–77. 9 Schey SA, Cavenagh J, Johnson R, Child JA, Oakervee H, Jones RW. An UK myeloma forum phase II study of thalidomide: long term follow-up and recommendations for treatment. Leukemia Res 2003; 27: 909–914. 10 Palumbo A, Bertola A, Falco P, Rosato R, Cavallo F, Giaccone L et al. Efficacy of low-dose thalidomide and dexamethasone as first salvage regimen in multiple myeloma. Hematol J 2004; 5: 318–324.
Clinical Genetics | 2011
Josephine Wincent; Britt-Marie Anderlid; Lagerberg M; Magnus Nordenskjöld; Jacqueline Schoumans
Wincent J, Anderlid B‐M, Lagerberg M, Nordenskjöld M, Schoumans J. High‐resolution molecular karyotyping in patients with developmental delay and/or multiple congenital anomalies in a clinical setting.
Leukemia | 2007
Ekaterina Kuchinskaya; Ann Nordgren; Mats Heyman; Jacqueline Schoumans; Martin Corcoran; Johan Staaf; Åke Borg; Stefan Söderhäll; Dan Grandér; Magnus Nordenskjöld; Elisabeth Blennow
Tiling-resolution array-CGH reveals the pattern of DNA copy number alterations in acute lymphoblastic leukemia with 21q amplification: the result of telomere dysfunction and breakage/fusion/breakage cycles?