Jacqueline Slinn
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacqueline Slinn.
Journal of Neurochemistry | 2009
Sheng T. Hou; Susan X. Jiang; Amy Aylsworth; Graeme Ferguson; Jacqueline Slinn; Houwen Hu; Thomas Leung; Joachim Kappler; Kozo Kaibuchi
Intracellular calcium influx through NMDA receptors triggers a cascade of deleterious signaling events which lead to neuronal death in neurological conditions such as stroke. However, it is not clear as to the molecular mechanism underlying early damage response from axons and dendrites which are important in maintaining a network essential for the survival of neurons. Here, we examined changes of axons treated with glutamate and showed the appearance of βIII‐tubulin positive varicosities on axons before the appearance of neuronal death. Dizocilpine blocked the occurrence of varicosities on axons suggesting that these microstructures were mediated by NMDA receptor activities. Despite early increased expression of pCaMKII and pMAPK after just 10 min of glutamate treatment, only inhibitors to Ca2+/calmodulin‐dependent protein kinase II (CaMKII) and calpain prevented the occurrence of axonal varicosities. In contrast, inhibitors to Rho kinase, mitogen‐activated protein kinase and phosphoinositide 3‐kinase were not effective, nor were they able to rescue neurons from death, suggesting CaMKII and calpain are important in axon survival. Activated CaMKII directly phosphorylates collapsin response mediator protein (CRMP) 2 which is independent of calpain‐mediated cleavage of CRMP2. Over‐expression of CRMP2, but not the phosphorylation‐resistant mutant CRMP2‐T555A, increased axonal resistance to glutamate toxicity with reduced numbers of varicosities. The levels of both pCRMP2 and pCaMKII were also increased robustly within early time points in ischemic brains and which correlated with the appearance of axonal varicosities in the ischemic neurons. Collectively, these studies demonstrated an important role for CaMKII in modulating the integrity of axons through CRMP2 during excitotoxicity‐induced neuronal death.
PLOS ONE | 2011
Shawn N. Whitehead; Kenneth Chan; Sandhya Gangaraju; Jacqueline Slinn; Jianjun Li; Sheng T. Hou
Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18∶1, d20∶1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury.
Brain Research | 2009
Ewa Baumann; Edward Preston; Jacqueline Slinn; Danica Stanimirovic
Vascular basement membrane (BM) stabilizes brain vessels and inhibits endothelial cell cycle. Cerebral ischemia causes BM breakdown with the loss of structural BM components including collagens and laminins. In this study, the expression changes of the BM proteoglycan agrin, and the non-structural BM constituent SPARC (BM-40, osteonectin), were studied in brain vessels after global cerebral ischemia. A transient 20-min forebrain ischemia followed by 1, 6 or 24 h of reperfusion was induced in adult Sprague-Dawley rats by combined bilateral common carotid artery occlusion and hypotension (42-45 mm Hg). In a separate group of animals, a mild (32 degrees C) post-ischemic hypothermia was induced for 6 h, starting immediately after ischemia. RNA from approximately 500 brain vessels (20-100 microm) extracted by laser-capture microdissection (LCM) microscopy was used to determine the expression of proteoglycans agrin and SPARC mRNAs by quantitative PCR (Q-PCR). Protein expression was determined by immunohistochemistry in adjacent tissue sections. The BBB permeability was assessed using (3)H-sucrose as an in vivo tracer and by examining fibrinogen immunoreactivity in tissue sections. A transient global brain ischemia resulted in a significant (ANOVA, p<0.05; 6 animals/group) reduction in agrin and SPARC mRNAs in LCM-captured brain vessels 24 h after reperfusion. A time-dependent loss of agrin and SPARC from the BM during reperfusion was also observed by immunochemistry. A 6-h post-ischemic hypothermia reduced SPARC and agrin mRNA and protein losses, BBB transfer constant for (3)H-sucrose as well as fibrinogen extravasation 24 h after reperfusion. It is conluded that a transient post-ischemic hypothermia stabilizes brain vessels and reduces BBB disruption in part by preventing proteolytic degradation of regulatory BM constituents, SPARC and agrin.
Molecular Imaging | 2008
Abedelnasser Abulrob; Eric Brunette; Jacqueline Slinn; Ewa Baumann; Danica Stanimirovic
The blood-brain barrier (BBB) disruption following cerebral ischemia can be exploited to deliver imaging agents and therapeutics into the brain. The aim of this study was (a) to establish novel in vivo optical imaging methods for longitudinal assessment of the BBB disruption and (b) to assess size selectivity and temporal patterns of the BBB disruption after a transient focal ischemia. The BBB permeability was assessed using in vivo time domain near-infrared optical imaging after contrast enhancement with either free Cy5.5 (1 kDa) or Cy5.5 conjugated with bovine serum albumin (BSA) (67 kDa) in mice subjected to either 60- or 20-minute transient middle cerebral artery occlusion (MCAO) and various times of reperfusion (up to 14 days). In vivo imaging observations were corroborated by ex vivo brain imaging and microscopic analyses of fluorescent tracer extravasation. The in vivo optical contrast enhancement with Cy5.5 was spatially larger than that observed with BSA-Cy5.5. Longitudinal studies after a transient 20-minute MCAO suggested a bilateral BBB disruption, more pronounced in the ipsilateral hemisphere, peaking at day 7 and resolving at day 14 after ischemia. The area differential between the BBB disruption for small and large molecules could potentially be useful as a surrogate imaging marker for assessing perinfarct tissues to which neuroprotective therapies of appropriate sizes could be delivered.
Molecular Imaging | 2007
Abedelnasser Abulrob; Eric Brunette; Jacqueline Slinn; Ewa Baumann; Danica Stanimirovic
Fluorescence lifetime is an intrinsic parameter of the fluorescent probe, independent of the probe concentration but sensitive to changes in the surrounding microenvironment. Therefore, fluorescence lifetime imaging could potentially be applied to in vivo diagnostic assessment of changes in the tissue microenvironment caused by disease, such as ischemia. The aim of this study was to evaluate the utility of noninvasive fluorescence lifetime imaging in distinguishing between normal and ischemic kidney tissue in vivo. Mice were subjected to 60-minute unilateral kidney ischemia followed by 6-hour reperfusion. Animals were then injected with the near-infrared fluorescence probe Cy5.5 or saline and imaged using a time-domain small-animal optical imaging system. Both fluorescence intensity and lifetime were acquired. The fluorescence intensity of Cy5.5 was clearly reduced in the ischemic compared with the contralateral kidney, and the fluorescence lifetime of Cy5.5 was not detected in the ischemic kidney, suggesting reduced kidney clearance. Interestingly, the two-component lifetime analysis of endogenous fluorescence at 700 nm distinguished renal ischemia in vivo without the need for Cy5.5 injection for contrast enhancement. The average fluorescence lifetime of endogenous tissue fluorophores was a sensitive indicator of kidney ischemia ex vivo. The study suggests that fluorescence lifetime analysis of endogenous tissue fluorophores could be used to discriminate ischemic or necrotic tissues by noninvasive in vivo or ex vivo organ imaging.
Molecular and Cellular Biology | 2007
Susan X. Jiang; Melissa Sheldrick; Angele Desbois; Jacqueline Slinn; Sheng T. Hou
ABSTRACT The nuclear transcription factor E2F1 plays an important role in modulating neuronal death in response to excitotoxicity and cerebral ischemia. Here, by comparing gene expression in brain cortices from E2F1+/+ and E2F1−/− mice using a custom high-density DNA microarray, we identified a group of putative E2F1 target genes that might be responsible for ischemia-induced E2F1-dependent neuronal death. Neuropilin 1 (NRP-1), a receptor for semaphorin 3A-mediated axon growth cone collapse and retraction, was confirmed to be a direct target of E2F1 based on (i) the fact that the NRP-1 promoter sequence contains an E2F1 binding site, (ii) reactivation of NRP-1 expression in E2F1−/− neurons when the E2F1 gene was replaced, (iii) activation of the NRP-1 promoter by E2F1 in a luciferase reporter assay, (iv) electrophoretic mobility gel shift analysis confirmation of the presence of an E2F binding sequence in the NRP-1 promoter, and (v) the fact that a chromatin immunoprecipitation assay showed that E2F1 binds directly to the endogenous NRP-1 promoter. Interestingly, the temporal induction in cerebral ischemia-induced E2F1 binding to the NRP-1 promoter correlated with the temporal-induction profile of NRP-1 mRNA, confirming that E2F1 positively regulates NRP-1 during cerebral ischemia. Functional analysis also showed that NRP-1 receptor expression was extremely low in E2F1−/− neurons, which led to the diminished response to semaphorin 3A-induced axonal shortening and neuronal death. An NRP-1 selective peptide inhibitor provided neuroprotection against oxygen-glucose deprivation. Taken together, these findings support a model in which E2F1 targets NRP-1 to modulate axonal damage and neuronal death in response to cerebral ischemia.
Journal of Biological Chemistry | 2010
Susan X. Jiang; Shawn N. Whitehead; Amy Aylsworth; Jacqueline Slinn; Bogdan Zurakowski; Kenneth K. Chan; Jianjun Li; Sheng T. Hou
Neuropilins (NRPs) are receptors for the major chemorepulsive axonal guidance cue semaphorins (Sema). The interaction of Sema3A/NRP1 during development leads to the collapse of growth cones. Here we show that Sema3A also induces death of cultured cortical neurons through NRP1. A specific NRP1 inhibitory peptide ameliorated Sema3A-evoked cortical axonal retraction and neuronal death. Moreover, Sema3A was also involved in cerebral ischemia-induced neuronal death. Expression levels of Sema3A and NRP1, but not NRP2, were significantly increased early during brain reperfusion following transient focal cerebral ischemia. NRP1 inhibitory peptide delivered to the ischemic brain was potently neuroprotective and prevented the loss of motor functions in mice. The integrity of the injected NRP1 inhibitory peptide into the brain remained unchanged, and the intact peptide permeated the ischemic hemisphere of the brain as determined using MALDI-MS-based imaging. Mechanistically, NRP1-mediated axonal collapse and neuronal death is through direct and selective interaction with the cytoplasmic tyrosine kinase Fer. Fer RNA interference effectively attenuated Sema3A-induced neurite retraction and neuronal death in cortical neurons. More importantly, down-regulation of Fer expression using Fer-specific RNA interference attenuated cerebral ischemia-induced brain damage. Together, these studies revealed a previously unknown function of NRP1 in signaling Sema3A-evoked neuronal death through Fer in cortical neurons.
Journal of Neurochemistry | 2012
Susan X. Jiang; Jacqueline Slinn; Amy Aylsworth; Sheng T. Hou
J. Neurochem. (2012) 122, 764–774.
Scientific Reports | 2015
Sheng T. Hou; Ladan Nilchi; Xuesheng Li; Sandhya Gangaraju; Susan X. Jiang; Amy Aylsworth; Robert Monette; Jacqueline Slinn
Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into the cerebral cortex, caused dose- and time-dependent increases in vascular permeability, with a degree comparable to that caused by injection of a known vascular permeability factor vascular endothelial growth factor receptors (VEGF). Application of Sema3A to cultured endothelial cells caused disorganization of F-actin stress fibre bundles and increased endothelial monolayer permeability, confirming Sema3A as a permeability factor. Sema3A-mediated F-actin changes in endothelial cells were through binding to the neuropilin2/VEGFR1 receptor complex, which in turn directly activates Mical2, a F-actin modulator. Down-regulation of Mical2, using specific siRNA, alleviated Sema3A-induced F-actin disorganization, cellular morphology changes and endothelial permeability. Importantly, ablation of Sema3A expression, cerebrovascular permeability and brain damage were significantly reduced in response to transient middle cerebral artery occlusion (tMCAO) and in a mouse model of cerebral ischemia/haemorrhagic transformation. Together, these studies demonstrated that Sema3A is a key mediator of cerebrovascular permeability and contributes to brain damage caused by cerebral ischemia.
Journal of Neuroscience Methods | 2008
Edward Preston; Jacqueline Slinn; Inna Vinokourov; Danica Stanimirovic
The fatty acid salt, sodium caprate (C10) is a well recognized drug absorption enhancer in intestine because of its ability to widen tight junctions in the epithelial cell lining. Caprates potential usefulness to similarly alter the blood-brain barrier (BBB) tight junctions of brain vasculature and enhance CNS drug delivery has undergone little investigation. Adult SD rats were anesthetized and C10 was infused into the left internal carotid artery (dosing parameters: 10-30 mM, 1 or 2 ml min(-1), for 0.5-1.5 min). Beginning 5 or 60 min after infusion an i.v. bolus of [3H]mannitol was allowed to circulate for 30 min and degree of BBB leakiness measured as magnitude of the transfer constant (Ki, nl g(-1)s(-1)) for blood to brain mannitol permeation determined from brain and plasma samples. In initial experiments identical C10 infusions caused dramatic BBB opening in some rats, e.g., 10-fold increase in Ki, but not in others. Higher dosing produced consistent opening measured 5-35 or 60-90 min post-infusion but was also toxic as shown by severe brain edema and cardio-respiratory failure. The variable effect of moderate doses was attributed to the fact that arterial blood pressure markedly increased during C10 infusion and may have altered the flow dynamics of cerebrovascular caprate distribution from rat to rat. We modified the procedure by temporarily withdrawing blood to produce hypovolemia and systemic arterial hypotension during C10 infusion. Caprate infusions of 15-25 mM, 2 ml min(-1) for 1 min, produced reliable dose-related openings that lasted as much as an hour, were reversible, and accompanied by little or moderate edema, depending on dose. These findings confirm an earlier report showing that intracarotid caprate infusion opens the BBB but also show that control of the temporary hypertensive response produced by intracarotid caprate infusion is key to tailoring the dosage to consistently achieve graded, reversible BBB opening.