Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacquelyn M. Weir is active.

Publication


Featured researches published by Jacquelyn M. Weir.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Plasma Lipidomic Analysis of Stable and Unstable Coronary Artery Disease

Peter J. Meikle; Gerard Wong; Despina Tsorotes; Christopher K. Barlow; Jacquelyn M. Weir; Michael J. Christopher; Gemma MacIntosh; Benjamin Goudey; Linda Stern; Adam Kowalczyk; Izhak Haviv; Anthony J. White; Anthony M. Dart; S. Duffy; Garry L. Jennings; Bronwyn A. Kingwell

Objective—Traditional risk factors for coronary artery disease (CAD) fail to adequately distinguish patients who have atherosclerotic plaques susceptible to instability from those who have more benign forms. Using plasma lipid profiling, this study aimed to provide insight into disease pathogenesis and evaluate the potential of lipid profiles to assess risk of future plaque instability. Methods and Results—Plasma lipid profiles containing 305 lipids were measured on 220 individuals (matched healthy controls, n=80; stable angina, n=60; unstable coronary syndrome, n=80) using electrospray-ionisation tandem mass spectrometry. ReliefF feature selection coupled with an L2-regularized logistic regression based classifier was used to create multivariate classification models which were verified via 3-fold cross-validation (1000 repeats). Models incorporating both lipids and traditional risk factors provided improved classification of unstable CAD from stable CAD (C-statistic=0.875, 95% CI 0.874–0.877) compared with models containing only traditional risk factors (C-statistic=0.796, 95% CI 0.795–0.798). Many of the lipids identified as discriminatory for unstable CAD displayed an association with disease acuity (severity), suggesting that they are antecedents to the onset of acute coronary syndrome. Conclusion—Plasma lipid profiling may contribute to a new approach to risk stratification for unstable CAD.


Journal of Lipid Research | 2013

Plasma lipid profiling in a large population-based cohort

Jacquelyn M. Weir; Gerard Wong; Christopher K. Barlow; Melissa A. Greeve; Adam Kowalczyk; Laura Almasy; Anthony G. Comuzzie; Michael C. Mahaney; Jeremy B. M. Jowett; Jonathan E. Shaw; Joanne E. Curran; John Blangero; Peter J. Meikle

We have performed plasma lipid profiling using liquid chromatography electrospray ionization tandem mass spectrometry on a population cohort of more than 1,000 individuals. From 10 μl of plasma we were able to acquire comparative measures of 312 lipids across 23 lipid classes and subclasses including sphingolipids, phospholipids, glycerolipids, and cholesterol esters (CEs) in 20 min. Using linear and logistic regression, we identified statistically significant associations of lipid classes, subclasses, and individual lipid species with anthropometric and physiological measures. In addition to the expected associations of CEs and triacylglycerol with age, sex, and body mass index (BMI), ceramide was significantly higher in males and was independently associated with age and BMI. Associations were also observed for sphingomyelin with age but this lipid subclass was lower in males. Lysophospholipids were associated with age and higher in males, but showed a strong negative association with BMI. Many of these lipids have previously been associated with chronic diseases including cardiovascular disease and may mediate the interactions of age, sex, and obesity with disease risk.


PLOS ONE | 2013

Plasma Lipid Profiling Shows Similar Associations with Prediabetes and Type 2 Diabetes

Peter J. Meikle; Gerard Wong; Christopher K. Barlow; Jacquelyn M. Weir; Melissa A. Greeve; Gemma MacIntosh; Laura Almasy; Anthony G. Comuzzie; Michael C. Mahaney; Adam Kowalczyk; Izhac Haviv; Narelle Grantham; Dianna J. Magliano; Jeremy B. M. Jowett; Paul Zimmet; Joanne E. Curran; John Blangero; Jonathan E. Shaw

The relationship between lipid metabolism with prediabetes (impaired fasting glucose and impaired glucose tolerance) and type 2 diabetes mellitus is poorly defined. We hypothesized that a lipidomic analysis of plasma lipids might improve the understanding of this relationship. We performed lipidomic analysis measuring 259 individual lipid species, including sphingolipids, phospholipids, glycerolipids and cholesterol esters, on fasting plasma from 117 type 2 diabetes, 64 prediabetes and 170 normal glucose tolerant participants in the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) then validated our findings on 1076 individuals from the San Antonio Family Heart Study (SAFHS). Logistic regression analysis of identified associations with type 2 diabetes (135 lipids) and prediabetes (134 lipids), after adjusting for multiple covariates. In addition to the expected associations with diacylglycerol, triacylglycerol and cholesterol esters, type 2 diabetes and prediabetes were positively associated with ceramide, and its precursor dihydroceramide, along with phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. Significant negative associations were observed with the ether-linked phospholipids alkylphosphatidylcholine and alkenylphosphatidylcholine. Most of the significant associations in the AusDiab cohort (90%) were subsequently validated in the SAFHS cohort. The aberration of the plasma lipidome associated with type 2 diabetes is clearly present in prediabetes, prior to the onset of type 2 diabetes. Lipid classes and species associated with type 2 diabetes provide support for a number of existing paradigms of dyslipidemia and suggest new avenues of investigation.


Diabetes | 2012

Overexpression of Sphingosine Kinase 1 Prevents Ceramide Accumulation and Ameliorates Muscle Insulin Resistance in High-Fat Diet–Fed Mice

Clinton R. Bruce; Steve Risis; Joanne R Babb; Christine Yang; Greg M. Kowalski; Ahrathy Selathurai; Robert S. Lee-Young; Jacquelyn M. Weir; Kazuaki Yoshioka; Yoh Takuwa; Peter J. Meikle; Stuart M. Pitson; Mark A. Febbraio

The sphingolipids sphingosine-1-phosphate (S1P) and ceramide are important bioactive lipids with many cellular effects. Intracellular ceramide accumulation causes insulin resistance, but sphingosine kinase 1 (SphK1) prevents ceramide accumulation, in part, by promoting its metabolism into S1P. Despite this, the role of SphK1 in regulating insulin action has been largely overlooked. Transgenic (Tg) mice that overexpress SphK1 were fed a standard chow or high-fat diet (HFD) for 6 weeks before undergoing several metabolic analyses. SphK1 Tg mice fed an HFD displayed increased SphK activity in skeletal muscle, which was associated with an attenuated intramuscular ceramide accumulation compared with wild-type (WT) littermates. This was associated with a concomitant reduction in the phosphorylation of c-jun amino-terminal kinase, a serine threonine kinase associated with insulin resistance. Accordingly, skeletal muscle and whole-body insulin sensitivity were improved in SphK1 Tg, compared with WT mice, when fed an HFD. We have identified that the enzyme SphK1 is an important regulator of lipid partitioning and insulin action in skeletal muscle under conditions of increased lipid supply.


The Journal of Physiology | 2012

Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice

Melissa L. Borg; Simin Fallah Omran; Jacquelyn M. Weir; Peter J. Meikle; Matthew J. Watt

‘Lipotoxicity’ refers to the excessive accumulation of lipids in non‐adipose tissues that causes cellular dysfunction and, in severe cases, cell death. Lipotoxicity is often present in obesity. It is unknown whether lipotoxicity occurs in the hypothalamus of the brain, an area involved in the regulation of feeding behaviour and energy balance. We show that high‐fat feeding results in increased lipid content in the hypothalamus, including triacylglycerol, diacylglycerol and ceramide, which was not reduced with 6 weeks of exercise training. The obese leptin‐deficient ob/ob mouse fed a chow diet had normal hypothalamic lipid content. These data show that dietary lipids regulate hypothalamic lipid accumulation, which is not readily reversed by exercise training.


Journal of Biological Chemistry | 2013

Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic β-cells

Ebru Boslem; Jacquelyn M. Weir; Gemma MacIntosh; Nancy Sue; James Cantley; Peter J. Meikle; Trevor J. Biden

Background: Saturated fatty acids disrupt protein trafficking and promote endoplasmic reticulum (ER) stress in pancreatic β-cells. Results: Chronic palmitate selectively reduces ER sphingomyelin and cholesterol and disrupts ER lipid rafts. Conclusion: Altered ER lipid rafts contribute to defective ER protein export. Significance: This provides novel insights into the mechanisms of β-cell death that underlie type 2 diabetes. Chronic saturated fatty acid exposure causes β-cell apoptosis and, thus, contributes to type 2 diabetes. Although endoplasmic reticulum (ER) stress and reduced ER-to-Golgi protein trafficking have been implicated, the exact mechanisms whereby saturated fatty acids trigger β-cell death remain elusive. Using mass spectroscopic lipidomics and subcellular fractionation, we demonstrate that palmitate pretreatment of MIN6 β-cells promoted ER remodeling of both phospholipids and sphingolipids, but only the latter was causally linked to lipotoxic ER stress. Thus, overexpression of glucosylceramide synthase, previously shown to protect against defective protein trafficking and ER stress, partially reversed lipotoxic reductions in ER sphingomyelin (SM) content and aggregation of ER lipid rafts, as visualized using Erlin1-GFP. Using both lipidomics and a sterol response element reporter assay, we confirmed that free cholesterol in the ER was also reciprocally modulated by chronic palmitate and glucosylceramide synthase overexpression. This is consistent with the known coregulation and association of SM and free cholesterol in lipid rafts. Inhibition of SM hydrolysis partially protected against ATF4/C/EBP homology protein induction because of palmitate. Our results suggest that loss of SM in the ER is a key event for initiating β-cell lipotoxicity, which leads to disruption of ER lipid rafts, perturbation of protein trafficking, and initiation of ER stress.


Diabetologia | 2012

Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice.

Darren C. Henstridge; Clinton R. Bruce; C P Pang; Graeme I. Lancaster; Tamara L. Allen; Emma Estevez; Timothy Gardner; Jacquelyn M. Weir; Peter J. Meikle; Karen S L Lam; Aimin Xu; Nobuharu Fujii; Laurie J. Goodyear; Mark A. Febbraio

Aims/hypothesisAlthough skeletal muscle insulin resistance has been associated with activation of c-Jun N-terminal kinase (JNK), whether increased JNK activity causes insulin resistance in this organ is not clear. In this study we examined the metabolic consequences of isolated JNK phosphorylation in muscle tissue.MethodsPlasmids containing genes encoding a wild-type JNK1 (WT-JNK) or a JNK1/JNKK2 fusion protein (rendering JNK constitutively active; CA-Jnk) were electroporated into one tibialis anterior (TA) muscle of C57Bl/6 mice, with the contralateral TA injected with an empty vector (CON) to serve as a within-animal control.ResultsOverproduction of WT-JNK resulted in a modest (∼25%) increase in phosphorylation (Thr183/Tyr185) of JNK, but no differences were observed in Ser307 phosphorylation of insulin receptor substrate 1 (IRS-1) or total IRS-1 protein, nor in insulin-stimulated glucose clearance into the TA muscle when comparing WT-JNK with CON. By contrast, overexpression of CA-Jnk, which markedly increased the phosphorylation of CA-JNK, also increased serine phosphorylation of IRS-1, markedly decreased total IRS-1 protein, and decreased insulin-stimulated phosphorylation of the insulin receptor (Tyr1361) and phosphorylation of Akt at (Ser473 and Thr308) compared with CON. Moreover, overexpression of CA-Jnk decreased insulin-stimulated glucose clearance into the TA muscle compared with CON and these effects were observed without changes in intramuscular lipid species.Conclusions/interpretationConstitutive activation of JNK in skeletal muscle impairs insulin signalling at the level of IRS-1 and Akt, a process which results in the disruption of normal glucose clearance into the muscle.


Hypertension | 2013

Plasma Lipidomic Profile Signature of Hypertension in Mexican American Families Specific Role of Diacylglycerols

Hemant Kulkarni; Peter J. Meikle; Manju Mamtani; Jacquelyn M. Weir; Christopher K. Barlow; Jeremy B. M. Jowett; Claire Bellis; Thomas D. Dyer; Matthew P. Johnson; David L. Rainwater; Laura Almasy; Michael C. Mahaney; Anthony G. Comuzzie; John Blangero; Joanne E. Curran

Both as a component of metabolic syndrome and as an independent entity, hypertension poses a continued challenge with regard to its diagnosis, pathogenesis, and treatment. Previous studies have documented connections between hypertension and indicators of lipid metabolism. Novel technologies, such as plasma lipidomic profiling, promise a better understanding of disorders in which there is a derangement of the lipid metabolism. However, association of plasma lipidomic profiles with hypertension in a high-risk population, such as Mexican Americans, has not been evaluated before. Using the rich data and sample resource from the ongoing San Antonio Family Heart Study, we conducted plasma lipidomic profiling by combining high-performance liquid chromatography with tandem mass spectroscopy to characterize 319 lipid species in 1192 individuals from 42 large and extended Mexican American families. Robust statistical analyses using polygenic regression models, liability threshold models, and bivariate trait analyses implemented in the SOLAR software were conducted after accounting for obesity, insulin resistance, and relative abundance of various lipoprotein fractions. Diacylglycerols, in general, and the DG 16:0/22:5 and DG 16:0/22:6 lipid species, in particular, were significantly associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), as well as liability of incident hypertension measured during 7140.17 person-years of follow-up. Four lipid species, including the DG 16:0/22:5 and DG 16:0/22:6 species, showed significant genetic correlations with the liability of hypertension in bivariate trait analyses. Our results demonstrate the value of plasma lipidomic profiling in the context of hypertension and identify disturbance of diacylglycerol metabolism as an independent biomarker of hypertension.


Journal of Lipid Research | 2011

Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus

B. G. Drew; Andrew L. Carey; Alaina K. Natoli; Melissa Formosa; Donna Vizi; Medini Reddy-Luthmoodoo; Jacquelyn M. Weir; Christopher K. Barlow; Gerrit van Hall; Peter J. Meikle; S. Duffy; Bronwyn A. Kingwell

We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study investigated the effect of rHDL infusion on fatty acid oxidation and lipolysis. Thirteen patients with type 2 diabetes received separate infusions of rHDL and placebo in a randomized, cross-over study. Fatty acid metabolism was assessed using steady-state tracer methodology, and plasma lipids were measured by mass spectrometry (lipidomics). In vitro studies were undertaken in 3T3-L1 adipocytes. rHDL infusion inhibited fasting-induced lipolysis (P = 0.03), fatty acid oxidation (P < 0.01), and circulating glycerol (P = 0.04). In vitro, HDL inhibited adipocyte lipolysis in part via activation of AMPK, providing a possible mechanistic link for the apparent reductions in lipolysis observed in vivo. In contrast, circulating NEFA increased after rHDL infusion (P < 0.01). Lipidomic analyses implicated phospholipase hydrolysis of rHDL-associated phosphatidylcholine as the cause, rather than lipolysis of endogenous fat stores. rHDL infusion inhibits fasting-induced lipolysis and oxidation in patients with type 2 diabetes, potentially through both AMPK activation in adipose tissue and elevation of plasma insulin. The phospholipid component of rHDL also has the potentially undesirable effect of increasing circulating NEFA.


Metabolites | 2015

An Efficient Single Phase Method for the Extraction of Plasma Lipids

Zahir H. Alshehry; Christopher K. Barlow; Jacquelyn M. Weir; Youping Zhou; Malcolm J. McConville; Peter J. Meikle

Lipidomic approaches are now widely used to investigate the relationship between lipid metabolism, health and disease. Large-scale lipidomics studies typically aim to quantify hundreds to thousands of lipid molecular species in a large number of samples. Consequently, high throughput methodology that can efficiently extract a wide range of lipids from biological samples is required. Current methods often rely on extraction in chloroform:methanol with or without two phase partitioning or other solvents, which are often incompatible with liquid chromatography electrospray ionization-tandem mass spectrometry (LC ESI-MS/MS). Here, we present a fast, simple extraction method that is suitable for high throughput LC ESI-MS/MS. Plasma (10 μL) was mixed with 100 μL 1-butanol:methanol (1:1 v/v) containing internal standards resulting in efficient extraction of all major lipid classes (including sterols, glycerolipids, glycerophospholipids and sphingolipids). Lipids were quantified using positive-ion mode LC ESI-MS/MS. The method showed high recovery (>90%) and reproducibility (%CV < 20%). It showed a strong correlation of all lipid measures with an established chloroform:methanol extraction method (R2 = 0.976). This method uses non-halogenated solvents, requires no drying or reconstitution steps and is suitable for large-scale LC ESI-MS/MS-based lipidomic analyses in research and clinical laboratories.

Collaboration


Dive into the Jacquelyn M. Weir's collaboration.

Top Co-Authors

Avatar

Peter J. Meikle

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar

Christopher K. Barlow

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar

Gerard Wong

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar

Joanne E. Curran

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

John Blangero

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Laura Almasy

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anthony G. Comuzzie

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael C. Mahaney

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Hemant Kulkarni

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Manju Mamtani

Texas Biomedical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge