Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques Bou Khalil is active.

Publication


Featured researches published by Jacques Bou Khalil.


Journal of Virology | 2015

Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae

Dorine G. I. Reteno; Samia Benamar; Jacques Bou Khalil; Julien Andreani; Nicholas Armstrong; Thomas Klose; Michael G. Rossmann; Philippe Colson; Didier Raoult; Bernard La Scola

ABSTRACT Giant viruses are protist-associated viruses belonging to the proposed order Megavirales; almost all have been isolated from Acanthamoeba spp. Their isolation in humans suggests that they are part of the human virome. Using a high-throughput strategy to isolate new giant viruses from their original protozoan hosts, we obtained eight isolates of a new giant viral lineage from Vermamoeba vermiformis, the most common free-living protist found in human environments. This new lineage was proposed to be the faustovirus lineage. The prototype member, faustovirus E12, forms icosahedral virions of ≈200 nm that are devoid of fibrils and that encapsidate a 466-kbp genome encoding 451 predicted proteins. Of these, 164 are found in the virion. Phylogenetic analysis of the core viral genes showed that faustovirus is distantly related to the mammalian pathogen African swine fever virus, but it encodes ≈3 times more mosaic gene complements. About two-thirds of these genes do not show significant similarity to genes encoding any known proteins. These findings show that expanding the panel of protists to discover new giant viruses is a fruitful strategy. IMPORTANCE By using Vermamoeba, a protist living in humans and their environment, we isolated eight strains of a new giant virus that we named faustovirus. The genomes of these strains were sequenced, and their sequences showed that faustoviruses are related to but different from the vertebrate pathogen African swine fever virus (ASFV), which belongs to the family Asfarviridae. Moreover, the faustovirus gene repertoire is ≈3 times larger than that of ASFV and comprises approximately two-thirds ORFans (open reading frames [ORFs] with no detectable homology to other ORFs in a database).


Clinical Infectious Diseases | 2015

Clostridium butyricum strains and dysbiosis linked to necrotizing enterocolitis in preterm neonates

Nadim Cassir; Samia Benamar; Jacques Bou Khalil; Olivier Croce; Marie Saint-Faust; Aurélien Jacquot; Matthieu Million; Saïd Azza; Nicholas Armstrong; Mireille Henry; Priscilla Jardot; Catherine Robert; Catherine Gire; Jean-Christophe Lagier; Eric Chabriere; Eric Ghigo; Hélène Marchandin; Catherine Sartor; Patrick Boutte; Gilles Cambonie; Umberto Simeoni; Didier Raoult; Bernard La Scola

BACKGROUND Necrotizing enterocolitis (NEC) is the most common and serious gastrointestinal disorder among preterm neonates. We aimed to assess a specific gut microbiota profile associated with NEC. METHODS Stool samples and clinical data were collected from 4 geographically independent neonatal intensive care units, over a 48-month period. Thirty stool samples from preterm neonates with NEC (n = 15) and controls (n = 15) were analyzed by 16S ribosomal RNA pyrosequencing and culture-based methods. The results led us to develop a specific quantitative polymerase chain reaction (qPCR) assay for Clostridium butyricum, and we tested stool samples from preterm neonates with NEC (n = 93) and controls (n = 270). We sequenced the whole genome of 16 C. butyricum strains, analyzed their phylogenetic relatedness, tested their culture supernatants for cytotoxic activity, and searched for secreted toxins. RESULTS Clostridium butyricum was specifically associated with NEC using molecular and culture-based methods (15/15 vs 2/15; P < .0001) or qPCR (odds ratio, 45.4 [95% confidence interval, 26.2-78.6]; P < .0001). Culture supernatants of C. butyricum strains from preterm neonates with NEC (n = 14) exhibited significant cytotoxic activity (P = .008), and we identified in all a homologue of the β-hemolysin toxin gene shared by Brachyspira hyodysenteriae, the etiologic agent of swine dysentery. The corresponding protein was secreted by a NEC-associated C. butyricum strain. CONCLUSIONS NEC was associated with C. butyricum strains and dysbiosis with an oxidized, acid, and poorly diversified gut microbiota. Our findings highlight the plausible toxigenic mechanism involved in the pathogenesis of NEC.


Frontiers in Microbiology | 2015

Isolation of new Brazilian giant viruses from environmental samples using a panel of protozoa

Fábio P. Dornas; Jacques Bou Khalil; Isabelle Pagnier; Didier Raoult; Jônatas Santos Abrahão; Bernard La Scola

The Megavirales are a newly described order capable of infecting different types of eukaryotic hosts. For the most part, the natural host is unknown. Several methods have been used to detect these viruses, with large discrepancies between molecular methods and co-cultures. To isolate giant viruses, we propose the use of different species of amoeba as a cellular support. The aim of this work was to isolate new Brazilian giant viruses by comparing the protozoa Acanthamoeba castellanii, A. polyphaga, A. griffini, and Vermamoeba vermiformis (VV) as a platform for cellular isolation using environmental samples. One hundred samples were collected from 3 different areas in September 2014 in the Pampulha lagoon of Belo Horizonte city, Minas Gerais, Brazil. PCR was used to identify the isolated viruses, along with hemacolor staining, labelling fluorescence and electron microscopy. A total of 69 viruses were isolated. The highest ratio of isolation was found in A. polyphaga (46.38%) and the lowest in VV (0%). Mimiviruses were the most frequently isolated. One Marseillevirus and one Pandoravirus were also isolated. With Brazilian environmental samples, we demonstrated the high rate of lineage A mimiviruses. This work demonstrates how these viruses survive and circulate in nature as well the differences between protozoa as a platform for cellular isolation.


Journal of Virology | 2016

The large marseillevirus explores different entry pathways by forming giant infectious vesicles

Thalita Souza Arantes; Rodrigo Araújo Lima Rodrigues; Ludmila Karen dos Santos Silva; Graziele Pereira Oliveira; Helton Luís de Souza; Jacques Bou Khalil; Danilo Bretas de Oliveira; Alice A. Torres; Luis Lamberti P. da Silva; Philippe Colson; Erna Geessien Kroon; Flávio Guimarães da Fonseca; Cláudio A. Bonjardim; Bernard La Scola; Jônatas Santos Abrahão

ABSTRACT Triggering the amoebal phagocytosis process is a sine qua non condition for most giant viruses to initiate their replication cycle and consequently to promote their progeny formation. It is well known that the amoebal phagocytosis process requires the recognition of particles of >500 nm, and most amoebal giant viruses meet this requirement, such as mimivirus, pandoravirus, pithovirus, and mollivirus. However, in the context of the discovery of amoebal giant viruses in the last decade, Marseillevirus marseillevirus (MsV) has drawn our attention, because despite its ability to successfully replicate in Acanthamoeba, remarkably it does not fulfill the >500-nm condition, since it presents an ∼250-nm icosahedrally shaped capsid. We deeply investigated the MsV cycle by using a set of methods, including virological, molecular, and microscopic (immunofluorescence, scanning electron microscopy, and transmission electron microscopy) assays. Our results revealed that MsV is able to form giant vesicles containing dozens to thousands of viral particles wrapped by membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggested that these giant vesicles are able to stimulate amoebal phagocytosis and to trigger the MsV replication cycle by an acidification-independent process. Also, we observed that MsV entry may occur by the phagocytosis of grouped particles (without surrounding membranes) and by an endosome-stimulated pathway triggered by single particles. Taken together, not only do our data deeply describe the main features of MsV replication cycle, but this is the first time, to our knowledge, that the formation of giant infective vesicles related to a DNA virus has been described. IMPORTANCE Triggering the amoebal phagocytosis process is a sine qua non condition required by most giant viruses to initiate their replication cycle. This process requires the recognition of particles of >500 nm, and many giant viruses meet this requirement. However, MsV is unusual, as despite having particles of ∼250 nm it is able to replicate in Acanthamoeba. Our results revealed that MsV is able to form giant vesicles, containing dozens to thousands of viral particles, wrapped in membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggest that these giant vesicles are able to stimulate phagocytosis using an acidification-independent process. Our work not only describes the main features of the MsV replication cycle but also describes, for the first time to our knowledge, the formation of huge infective vesicles in a large DNA viruses.


Frontiers in Microbiology | 2016

High-Throughput Isolation of Giant Viruses in Liquid Medium Using Automated Flow Cytometry and Fluorescence Staining

Jacques Bou Khalil; Stéphane Robert; Dorine G. I. Reteno; Julien Andreani; Didier Raoult; Bernard La Scola

The isolation of giant viruses using amoeba co-culture is tedious and fastidious. Recently, the procedure was successfully associated with a method that detects amoebal lysis on agar plates. However, the procedure remains time-consuming and is limited to protozoa growing on agar. We present here advances for the isolation of giant viruses. A high-throughput automated method based on flow cytometry and fluorescent staining was used to detect the presence of giant viruses in liquid medium. Development was carried out with the Acanthamoeba polyphaga strain widely used in past and current co-culture experiments. The proof of concept was validated with virus suspensions: artificially contaminated samples but also environmental samples from which viruses were previously isolated. After validating the technique, and fortuitously isolating a new Mimivirus, we automated the technique on 96-well plates and tested it on clinical and environmental samples using other protozoa. This allowed us to detect more than 10 strains of previously known species of giant viruses and seven new strains of a new virus lineage. This automated high-throughput method demonstrated significant time saving, and higher sensitivity than older techniques. It thus creates the means to isolate giant viruses at high speed.


Viruses | 2016

Cedratvirus, a Double-Cork Structured Giant Virus, is a Distant Relative of Pithoviruses

Julien Andreani; Sarah Aherfi; Jacques Bou Khalil; Fabrizio Di Pinto; Idir Bitam; Didier Raoult; Philippe Colson; Bernard La Scola

Most viruses are known for the ability to cause symptomatic diseases in humans and other animals. The discovery of Acanthamoeba polyphaga mimivirus and other giant amoebal viruses revealed a considerable and previously unknown area of uncharacterized viral particles. Giant viruses have been isolated from various environmental samples collected from very distant geographic places, revealing a ubiquitous distribution. Their morphological and genomic features are fundamental elements for classifying them. Herein, we report the isolation and draft genome of Cedratvirus, a new amoebal giant virus isolated in Acanthamoeba castellanii, from an Algerian environmental sample. The viral particles are ovoid-shaped, resembling Pithovirus sibericum, but differing notably in the presence of two corks at each extremity of the virion. The draft genome of Cedratvirus—589,068 base pairs in length—is a close relative of the two previously described pithoviruses, sharing 104 and 113 genes with P. sibericum and Pithovirus massiliensis genomes, respectively. Interestingly, analysis of these viruses’ core genome reveals that only 21% of Cedratvirus genes are involved in best reciprocal hits with the two pithoviruses. Phylogeny reconstructions and comparative genomics indicate that Cedratvirus is most closely related to pithoviruses, and questions their membership in an enlarged putative Pithoviridae family.


Genome Biology and Evolution | 2016

Comparison of a Modern and Fossil Pithovirus Reveals Its Genetic Conservation and Evolution

Anthony Levasseur; Julien Andreani; J. Delerce; Jacques Bou Khalil; Catherine Robert; Bernard La Scola; Didier Raoult

Most theories on viral evolution are speculative and lack fossil comparison. Here, we isolated a modern Pithovirus-like virus from sewage samples. This giant virus, named Pithovirus massiliensis, was compared with its prehistoric counterpart, Pithovirus sibericum, found in Siberian permafrost. Our analysis revealed near-complete gene repertoire conservation, including horizontal gene transfer and ORFans. Furthermore, all orthologous genes evolved under strong purifying selection with a non-synonymous and synonymous ratio in the same range as the ratio found in the prokaryotic world. The comparison between fossil and modern Pithovirus species provided an estimation of the cadence of the molecular clock, reaching up to 3 × 10−6 mutations/site/year. In addition, the strict conservation of HGTs and ORFans in P. massiliensis revealed the stable genetic mosaicism in giant viruses and excludes the concept of a bag of genes. The genetic stability for 30,000 years of P. massiliensis demonstrates that giant viruses evolve similarly to prokaryotes by classical mechanisms of evolution, including selection and fixation of genes, followed by selective constraints.


Current Opinion in Microbiology | 2016

Updating strategies for isolating and discovering giant viruses.

Jacques Bou Khalil; Julien Andreani; Bernard La Scola

Almost fifteen years ago, the discovery of Acanthamoeba polyphaga mimivirus, the first giant virus, changed how we define a virus. It was discovered incidentally in a process of isolating Legionella sp. from environmental samples in the context of pneumonia epidemics using a co-culture system with Acanthamoeba. Since then, much effort and improvement has been put into the original technique. In addition to the known families of Mimiviridae and Marseilleviridae, four new proposed families of giant viruses have been isolated: Pandoravirus, Pithovirus, Faustovirus and Mollivirus. Major improvements were based on enrichment systems, targeted use of antibiotics and high-throughput methods. The most recent development, using flow cytometry for isolation and presumptive identification systems, opens a path to large environmental surveys that may discover new giant virus families in new protozoa supports used for culture support.


Frontiers in Cellular and Infection Microbiology | 2016

Developmental Cycle and Genome Analysis of “Rubidus massiliensis,” a New Vermamoeba vermiformis Pathogen

Jacques Bou Khalil; Samia Benamar; Jean-Pierre Baudoin; Olivier Croce; Caroline Blanc-Tailleur; Isabelle Pagnier; Didier Raoult; Bernard La Scola

The study of amoeba-associated Chlamydiae is a dynamic field in which new species are increasingly reported. In the present work, we characterized the developmental cycle and analyzed the genome of a new member of this group associated with Vermamoeba vermiformis, we propose to name “Rubidus massiliensis.” This bacterium is well-adapted to its amoeba host and do not reside inside of inclusion vacuoles after phagocytosis. It has a developmental cycle typical of this family of bacteria, with a transition from condensed elementary bodies to hypodense replicative reticulate bodies. Multiplication occurs through binary fission of the reticulate bodies. The genome of “R. massiliensis” consists of a 2.8 Mbp chromosome and two plasmids (pRm1, pRm2) consisting of 39,075 bp and 80,897 bp, respectively, a feature that is unique within this group. The Re-analysis of the Chlamydiales genomes including the one of “R. massiliensis” slightly modified the previous phylogeny of the tlc gene encoding the ADP/ATP translocase. Our analysis suggested that the tlc gene could have been transferred to plant and algal plastids before the transfer to Rickettsiales, and that this gene was probably duplicated several times.


Journal of Virology | 2017

Pacmanvirus, a New Giant Icosahedral Virus at the Crossroads between Asfarviridae and Faustoviruses

Julien Andreani; Jacques Bou Khalil; Madhumati Sevvana; Samia Benamar; Fabrizio Di Pinto; Idir Bitam; Philippe Colson; Thomas Klose; Michael G. Rossmann; Didier Raoult; Bernard La Scola

ABSTRACT African swine fever virus, a double-stranded DNA virus that infects pigs, is the only known member of the Asfarviridae family. Nevertheless, during our isolation and sequencing of the complete genome of faustovirus, followed by the description of kaumoebavirus, carried out over the past 2 years, we observed the emergence of previously unknown related viruses within this group of viruses. Here we describe the isolation of pacmanvirus, a fourth member in this group, which is capable of infecting Acanthamoeba castellanii. Pacmanvirus A23 has a linear compact genome of 395,405 bp, with a 33.62% G+C content. The pacmanvirus genome harbors 465 genes, with a high coding density. An analysis of reciprocal best hits shows that 31 genes are conserved between African swine fever virus, pacmanvirus, faustovirus, and kaumoebavirus. Moreover, the major capsid protein locus of pacmanvirus appears to be different from those of kaumoebavirus and faustovirus. Overall, comparative and genomic analyses reveal the emergence of a new group or cluster of viruses encompassing African swine fever virus, faustovirus, pacmanvirus, and kaumoebavirus. IMPORTANCE Pacmanvirus is a newly discovered icosahedral double-stranded DNA virus that was isolated from an environmental sample by amoeba coculture. We describe herein its structure and replicative cycle, along with genomic analysis and genomic comparisons with previously known viruses. This virus represents the third virus, after faustovirus and kaumoebavirus, that is most closely related to classical representatives of the Asfarviridae family. These results highlight the emergence of previously unknown double-stranded DNA viruses which delineate and extend the diversity of a group around the asfarvirus members.

Collaboration


Dive into the Jacques Bou Khalil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Raoult

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samia Benamar

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge