Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques Bourguignon is active.

Publication


Featured researches published by Jacques Bourguignon.


Trends in Plant Science | 2001

The glycine decarboxylase system: a fascinating complex

Roland Douce; Jacques Bourguignon; Michel Neuburger; Fabrice Rébeillé

The mitochondrial glycine decarboxylase multienzyme system, connected to serine hydroxymethyltransferase through a soluble pool of tetrahydrofolate, consists of four different component enzymes, the P-, H-, T- and L-proteins. In a multi-step reaction, it catalyses the rapid destruction of glycine molecules flooding out of the peroxisomes during the course of photorespiration. In green leaves, this multienzyme system is present at tremendously high concentrations within the mitochondrial matrix. The structure, mechanism and biogenesis of glycine decarboxylase are discussed. In the catalytic cycle of glycine decarboxylase, emphasis is given to the lipoate-dependent H-protein that plays a pivotal role, acting as a mobile substrate that commutes successively between the other three proteins. Plant mitochondria possess all the necessary enzymatic equipment for de novo synthesis of tetrahydrofolate and lipoic acid, serving as cofactors for glycine decarboxylase and serine hydroxymethyltransferase functioning.


Molecular & Cellular Proteomics | 2007

A Proteomics Dissection of Arabidopsis thaliana Vacuoles Isolated from Cell Culture

Michel Jaquinod; Florent Villiers; Sylvie Kieffer-Jaquinod; Véronique Hugouvieux; Christophe Bruley; Jérôme Garin; Jacques Bourguignon

To better understand the mechanisms governing cellular traffic, storage of various metabolites, and their ultimate degradation, Arabidopsis thaliana vacuole proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker α-mannosidase, the enrichment factor of the vacuoles was estimated at ∼42-fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by Western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane, and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomics study. Therefore, a proteomics approach was developed to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes the following: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, and (iii) a prefractionation of proteins by short migration by SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, two-thirds of which copurify with the membrane hydrophobic fraction and one-third of which copurifies with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were known previously to be associated with vacuolar activities. The proteins identified are involved in ion and metabolite transport (26%), stress response (9%), signal transduction (7%), and metabolism (6%) or have been described to be involved in typical vacuolar activities, such as protein and sugar hydrolysis. The subcellular localization of several putative vacuolar proteins was confirmed by transient expression of green fluorescent protein fusion constructs.


Methods in Enzymology | 1987

[37] Isolation of plant mitochondria: General principles and criteria of integrity

Roland Douce; Jacques Bourguignon; Renaud Brouquisse; Michel Neuburger

Publisher Summary This chapter describes the criteria for the assessment of mitochondrial integrity, including (1) the respiratory rate in the presence of added ADP compared to the rate obtained following its expenditure, (2) the ADP/O ratio, and (3) the latency of matrix enzymes, such as fumarate hydratase mitochondria are measured. The chapter also discusses isolation of chlorophyll-free mitochondria from pea leaves. Because the report of a procedure is to obtain fully functional and intact mitochondria from leaves of higher plants, several techniques for the purification of the mitochondria must free from contaminating thylakoid membranes. The methods used have included discontinuous Percoll gradient centrifugation of both mechanically prepared crude mitochondria and those from broken protoplasts, a combination of phase-partition and Percoll gradient centrifugation, and linear sucrose gradient centrifugation.


Proteomics | 2011

Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches

Florent Villiers; Céline Ducruix; Véronique Hugouvieux; Nolwenn Jarno; Eric Ezan; Jérôme Garin; Christophe Junot; Jacques Bourguignon

Monitoring molecular dynamics of an organism upon stress is probably the best approach to decipher physiological mechanisms involved in the stress response. Quantitative analysis of proteins and metabolites is able to provide accurate information about molecular changes allowing the establishment of a range of more or less specific mechanisms, leading to the identification of major players in the considered pathways. Such tools have been successfully used to analyze the plant response to cadmium (Cd), a major pollutant capable of causing severe health issues as it accumulates in the food chain. We present a summary of proteomics and metabolomics works that contributed to a better understanding of the molecular aspects involved in the plant response to Cd. This work allowed us to provide a finer picture of general signaling, regulatory and metabolic pathways that appeared to be affected upon Cd stress. In particular, we conclude on the advantage of employing different approaches of global proteome‐ and metabolome‐wide techniques, combined with more targeted analysis to answer molecular questions and unravel biological networks. Finally, we propose possible directions and methodologies for future prospectives in this field, as many aspects of the plant–Cd interaction remain to be discovered.


Plant Physiology | 1990

Interaction between the component enzymes of the glycine decarboxylase multienzyme complex.

David J. Oliver; Michel Neuburger; Jacques Bourguignon; Roland Douce

The glycine decarboxylase multienzyme complex comprises about one-third of the soluble protein of the matrix of pea (Pisum sativum) leaf mitochondria where it exists at a concentration of approximately 130 milligrams protein/milliliter. Under these conditions the complex is stable with an approximate subunit ratio of 2 P-protein dimers:27 H-protein monomers:9 T-protein monomers:1 L-protein dimer. When the complex is diluted it tends to dissociate into its component enzymes. This prevents the purification of the intact complex by gel filtration or ultracentrifugation. In the dissociated state the H-protein acts as a mobile cosubstrate that commutes between the other three enzymes and shows typical substrate kinetics. When the complex is reformed, the H-protein no longer acts as a substrate but as an integrated part of the enzyme complex.


Journal of Biological Chemistry | 2009

Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway: Activation in response to cadmium

Cécile Polge; Michel Jaquinod; Frances M. Holzer; Jacques Bourguignon; Linda L. Walling; Renaud Brouquisse

Heavy metals are known to generate reactive oxygen species that lead to the oxidation and fragmentation of proteins, which become toxic when accumulated in the cell. In this study, we investigated the role of the proteasome during cadmium stress in the leaves of Arabidopsis thaliana plants. Using biochemical and proteomics approaches, we present the first evidence of an active proteasome pathway in plants. We identified and characterized the peptidases acting sequentially downstream from the proteasome in animal cells as follows: tripeptidyl-peptidase II, thimet oligopeptidase, and leucine aminopeptidase. We investigated the proteasome proteolytic pathway response in the leaves of 6-week-old A. thaliana plants grown hydroponically for 24, 48, and 144 h in the presence or absence of 50 μm cadmium. The gene expression and proteolytic activity of the proteasome and the different proteases of the pathway were found to be up-regulated in response to cadmium. In an in vitro assay, oxidized bovine serum albumin and lysozyme were more readily degraded in the presence of 20 S proteasome and tripeptidyl-peptidase II than their nonoxidized form, suggesting that oxidized proteins are preferentially degraded by the Arabidopsis 20 S proteasome pathway. These results show that, in response to cadmium, the 20 S proteasome proteolytic pathway is up-regulated at both RNA and activity levels in Arabidopsis leaves and may play a role in degrading oxidized proteins generated by the stress.


Mass Spectrometry Reviews | 2011

Plant organelle proteomics: collaborating for optimal cell function.

Ganesh Kumar Agrawal; Jacques Bourguignon; Norbert Rolland; Geneviève Ephritikhine; Myriam Ferro; Michel Jaquinod; Konstantinos G. Alexiou; Thierry Chardot; Niranjan Chakraborty; Pascale Jolivet; John H. Doonan; Randeep Rakwal

Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.


FEBS Letters | 1986

Isolation of a large complex from the matrix of pea leaf mitochondria involved in the rapid transformation of glycine into serine

Michel Neuburger; Jacques Bourguignon; Roland Douce

The glycine cleavage system associated with serine hydroxymethyltransferase has been extracted as a fully active complex from pea leaf mitochondria. Some biochemical properties of this complex were studied.


Plant Physiology | 1996

Regulation of the Expression of the Glycine Decarboxylase Complex during Pea Leaf Development

Pierre Vauclare; Nicolas Diallo; Jacques Bourguignon; David Macherel; Roland Douce

The expression of the genes encoding the four proteins (P, H, T, and L) of glycine decarboxylase, a multienzymatic complex involved in the mitochondrial step of the photorespiration pathway, was examined during pea (Pisum sativum) leaf development in comparison with ribulose-1,5-bisphosphate carboxylase/oxygenase. Mitochondria from the primary leaf were isolated at several well-defined stages of development. Their capacity to oxidize glycine was negligible during the earlier stages but increased dramatically once the leaflet opened. This was correlated with the accumulation of the glycine decarboxylase complex (GDC) proteins, which was shown to occur in preexisting mitochondria, producing an increase in their density. The transcription of the GDC genes was coordinated and occurred early, with a peak at 7 d, a stage at which mitochondria are unable to oxidize glycine. This implies the existence of posttranscriptional control of gene expression. The comparison of the expression patterns of the genes encoding specific proteins of GDC with that of rbcS genes suggests a common regulation scheme that is related to light induction. However, ribulose-1,5-bisphosphate carboxylase/oxygenase is present in the chloroplast well before GDC fills the mitochondria, suggesting that the setup of photorespiration occurs in cells already engaged in active photosynthesis.


Plant Physiology | 2009

Arabidopsis Putative Selenium-Binding Protein1 Expression Is Tightly Linked to Cellular Sulfur Demand and Can Reduce Sensitivity to Stresses Requiring Glutathione for Tolerance

Véronique Hugouvieux; Christelle Dutilleul; Agnès Jourdain; Florie Reynaud; Véronique Lopez; Jacques Bourguignon

Selenium-Binding Protein1 (SBP1) gene expression was studied in Arabidopsis (Arabidopsis thaliana) seedlings challenged with several stresses, including cadmium (Cd), selenium {selenate [Se(VI)] and selenite [Se(IV)]}, copper (Cu), zinc (Zn), and hydrogen peroxide (H2O2) using transgenic lines expressing the luciferase (LUC) reporter gene under the control of the SBP1 promoter. In roots and shoots of SBP1∷LUC lines, LUC activity increased in response to Cd, Se(VI), Cu, and H2O2 but not in response to Se(IV) or Zn. The pattern of expression of SBP1 was similar to that of PRH43, which encodes the 5′-Adenylylphosphosulfate Reductase2, a marker for the induction of the sulfur assimilation pathway, suggesting that an enhanced sulfur demand triggers SBP1 up-regulation. Correlated to these results, SBP1 promoter showed enhanced activity in response to sulfur starvation. The sulfur starvation induction of SBP1 was abolished by feeding the plants with glutathione (GSH) and was enhanced when seedlings were treated simultaneously with buthionine sulfoxide, which inhibits GSH synthesis, indicating that GSH level participates in the regulation of SBP1 expression. Changes in total GSH level were observed in seedlings challenged with Cd, Se(VI), and H2O2. Accordingly, cad2-1 seedlings, affected in GSH synthesis, were more sensitive than wild-type plants to these three stresses. Moreover, wild-type and cad2-1 seedlings overexpressing SBP1 showed a significant enhanced tolerance to Se(VI) and H2O2 in addition to the previously described resistance to Cd, highlighting that SBP1 expression decreases sensitivity to stress requiring GSH for tolerance. These results are discussed with regard to the potential regulation and function of SBP1 in plants.

Collaboration


Dive into the Jacques Bourguignon's collaboration.

Top Co-Authors

Avatar

Roland Douce

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Michel Neuburger

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Macherel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Roland Douce

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Claude Alban

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

David Macherel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnès Jourdain

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Claudine Cohen-Addad

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge