Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques-Donald Tournier is active.

Publication


Featured researches published by Jacques-Donald Tournier.


Magnetic Resonance in Medicine | 2011

Diffusion tensor imaging and beyond

Jacques-Donald Tournier; Susumu Mori; Alexander Leemans

The diffusion of water molecules inside organic tissues is often anisotropic (1). Namely, if there are aligned structures in the tissue, the apparent diffusion coefficient (ADC) of water may vary depending on the orientation along which the diffusion-weighted (DW) measurements are taken. In the late 1980s, diffusion-weighted imaging (DWI) became possible by combining MR diffusion measurements with imaging, enabling the mapping of both diffusion constants and diffusion anisotropy inside the brain and revealing valuable information about axonal architectures (2-14). In the beginning of the 1990s, the diffusion tensor model was introduced to describe the degree of anisotropy and the structural orientation information quantitatively (15,16). This diffusion tensor imaging (DTI) approach provided a simple and elegant way to model this complex neuroanatomical information using only six parameters. Since then, we have witnessed a tremendous amount of growth in this research field, including more sophisticated nontensor models to describe diffusion properties and to extract finer anatomical information from each voxel. Three-dimensional (3D) reconstruction technologies for white matter tracts are also developing beyond the initial deterministic line-propagation models (17-20). As these new reconstruction methods are an area of very active research, it is important to remember that the theory cannot be dissociated from practical aspects of the technology. Importantly, DWI is inherently a noise-sensitive and artifact-prone technique (Fig. 1). Thus, we cannot overemphasize the importance of image quality assurance and robust image analysis techniques. Last but not least, data acquisition technologies have also been steadfastly evolving. In this article, we review the recent advances in these areas since 2000. FIG. 1 Examples of typical artifacts: (i) signal/slice dropouts, (ii) eddy-current induced geometric distortions, (iii) systematic vibration artifacts, and (iv) ghosting (insufficient/incorrect fat-suppression).


International Journal of Imaging Systems and Technology | 2012

MRtrix: Diffusion tractography in crossing fiber regions

Jacques-Donald Tournier; Fernando Calamante; Alan Connelly

In recent years, diffusion‐weighted magnetic resonance imaging has attracted considerable attention due to its unique potential to delineate the white matter pathways of the brain. However, methodologies currently available and in common use among neuroscientists and clinicians are typically based on the diffusion tensor model, which has comprehensively been shown to be inadequate to characterize diffusion in brain white matter. This is due to the fact that it is only capable of resolving a single fiber orientation per voxel, causing incorrect fiber orientations, and hence pathways, to be estimated through these voxels. Given that the proportion of affected voxels has been recently estimated at 90%, this is a serious limitation. Furthermore, most implementations use simple “deterministic” streamlines tracking algorithms, which have now been superseded by “probabilistic” approaches. In this study, we present a robust set of tools to perform tractography, using fiber orientations estimated using the validated constrained spherical deconvolution method, coupled with a probabilistic streamlines tracking algorithm. This methodology is shown to provide superior delineations of a number of known white matter tracts, in a manner robust to crossing fiber effects. These tools have been compiled into a software package, called MRtrix, which has been made freely available for use by the scientific community.


Human Brain Mapping | 2013

Investigating the Prevalence of Complex Fiber Configurations in White Matter Tissue with Diffusion Magnetic Resonance Imaging

Ben Jeurissen; Alexander Leemans; Jacques-Donald Tournier; Derek K. Jones; Jan Sijbers

It has long been recognized that the diffusion tensor model is inappropriate to characterize complex fiber architecture, causing tensor‐derived measures such as the primary eigenvector and fractional anisotropy to be unreliable or misleading in these regions. There is however still debate about the impact of this problem in practice. A recent study using a Bayesian automatic relevance detection (ARD) multicompartment model suggested that a third of white matter (WM) voxels contain crossing fibers, a value that, whilst already significant, is likely to be an underestimate. The aim of this study is to provide more robust estimates of the proportion of affected voxels, the number of fiber orientations within each WM voxel, and the impact on tensor‐derived analyses, using large, high‐quality diffusion‐weighted data sets, with reconstruction parameters optimized specifically for this task. Two reconstruction algorithms were used: constrained spherical deconvolution (CSD), and the ARD method used in the previous study. We estimate the proportion of WM voxels containing crossing fibers to be ∼90% (using CSD) and 63% (using ARD). Both these values are much higher than previously reported, strongly suggesting that the diffusion tensor model is inadequate in the vast majority of WM regions. This has serious implications for downstream processing applications that depend on this model, particularly tractography, and the interpretation of anisotropy and radial/axial diffusivity measures. Hum Brain Mapp 34:2747–2766, 2013.


NeuroImage | 2008

Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data.

Jacques-Donald Tournier; Chun-Hung Yeh; Fernando Calamante; Kuan-Hung Cho; Alan Connelly; Ching-Po Lin

Diffusion-weighted imaging can potentially be used to infer the connectivity of the human brain in vivo using fibre-tracking techniques, and is therefore of great interest to neuroscientists and clinicians. A key requirement for fibre tracking is the accurate estimation of white matter fibre orientations within each imaging voxel. The diffusion tensor model, which is widely used for this purpose, has been shown to be inadequate in crossing fibre regions. A number of approaches have recently been proposed to address this issue, based on high angular resolution diffusion-weighted imaging (HARDI) data. In this study, an experimental model of crossing fibres, consisting of water-filled plastic capillaries, is used to thoroughly assess three such techniques: constrained spherical deconvolution (CSD), super-resolved CSD (super-CSD) and Q-ball imaging (QBI). HARDI data were acquired over a range of crossing angles and b-values, from which fibre orientations were computed using each technique. All techniques were capable of resolving the two fibre populations down to a crossing angle of 45 degrees , and down to 30 degrees for super-CSD. A bias was observed in the fibre orientations estimated by QBI for crossing angles other than 90 degrees, consistent with previous simulation results. Finally, for a 45 degrees crossing, the minimum b-value required to resolve the fibre orientations was 4000 s/mm(2) for QBI, 2000 s/mm(2) for CSD, and 1000 s/mm(2) for super-CSD. The quality of estimation of fibre orientations may profoundly affect fibre tracking attempts, and the results presented provide important additional information regarding performance characteristics of well-known methods.


Human Brain Mapping | 2011

Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution.

Ben Jeurissen; Alexander Leemans; Derek K. Jones; Jacques-Donald Tournier; Jan Sijbers

Constrained spherical deconvolution (CSD) is a new technique that, based on high‐angular resolution diffusion imaging (HARDI) MR data, estimates the orientation of multiple intravoxel fiber populations within regions of complex white matter architecture, thereby overcoming the limitations of the widely used diffusion tensor imaging (DTI) technique. One of its main applications is fiber tractography. The noisy nature of diffusion‐weighted (DW) images, however, affects the estimated orientations and the resulting fiber trajectories will be subject to uncertainty. The impact of noise can be large, especially for HARDI measurements, which employ relatively high b‐values. To quantify the effects of noise on fiber trajectories, probabilistic tractography was introduced, which considers multiple possible pathways emanating from one seed point, taking into account the uncertainty of local fiber orientations. In this work, a probabilistic tractography algorithm is presented based on CSD and the residual bootstrap. CSD, which provides accurate and precise estimates of multiple fiber orientations, is used to extract the local fiber orientations. The residual bootstrap is used to estimate fiber tract probability within a clinical time frame, without prior assumptions about the form of uncertainty in the data. By means of Monte Carlo simulations, the performance of the CSD fiber pathway uncertainty estimator is measured in terms of accuracy and precision. In addition, the performance of the proposed method is compared to state‐of‐the‐art DTI residual bootstrap tractography and to an existing probabilistic CSD tractography algorithm using clinical DW data. Hum Brain Mapp, 2011.


NeuroImage | 2010

Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping

Fernando Calamante; Jacques-Donald Tournier; Graeme D. Jackson; Alan Connelly

Neuroimaging advances have given rise to major progress in neurosciences and neurology, as ever more subtle and specific imaging methods reveal new aspects of the brain. One major limitation of current methods is the spatial scale of the information available. We present an approach to gain spatial resolution using post-processing methods based on diffusion MRI fiber-tracking, to reveal structures beyond the resolution of the acquired imaging voxel; we term such a method as super-resolution track-density imaging (TDI). A major unmet challenge in imaging is the identification of abnormalities in white matter as a cause of illness; super-resolution TDI is shown to produce high-quality white matter images, with high spatial resolution and outstanding anatomical contrast. A unique property of these maps is demonstrated: their spatial resolution and signal-to-noise ratio can be tailored depending on the chosen image resolution and total number of fiber-tracks generated. Super-resolution TDI should greatly enhance the study of white matter in disorders of the brain and mind.


Journal of Neurosurgery | 2013

White matter fiber tractography: why we need to move beyond DTI.

Shawna Farquharson; Jacques-Donald Tournier; Fernando Calamante; Gavin Fabinyi; Michal Schneider-Kolsky; Graeme D. Jackson; Alan Connelly

OBJECT Diffusion-based MRI tractography is an imaging tool increasingly used in neurosurgical procedures to generate 3D maps of white matter pathways as an aid to identifying safe margins of resection. The majority of white matter fiber tractography software packages currently available to clinicians rely on a fundamentally flawed framework to generate fiber orientations from diffusion-weighted data, namely diffusion tensor imaging (DTI). This work provides the first extensive and systematic exploration of the practical limitations of DTI-based tractography and investigates whether the higher-order tractography model constrained spherical deconvolution provides a reasonable solution to these problems within a clinically feasible timeframe. METHODS Comparison of tractography methodologies in visualizing the corticospinal tracts was made using the diffusion-weighted data sets from 45 healthy controls and 10 patients undergoing presurgical imaging assessment. Tensor-based and constrained spherical deconvolution-based tractography methodologies were applied to both patients and controls. RESULTS Diffusion tensor imaging-based tractography methods (using both deterministic and probabilistic tractography algorithms) substantially underestimated the extent of tracks connecting to the sensorimotor cortex in all participants in the control group. In contrast, the constrained spherical deconvolution tractography method consistently produced the biologically expected fan-shaped configuration of tracks. In the clinical cases, in which tractography was performed to visualize the corticospinal pathways in patients with concomitant risk of neurological deficit following neurosurgical resection, the constrained spherical deconvolution-based and tensor-based tractography methodologies indicated very different apparent safe margins of resection; the constrained spherical deconvolution-based method identified corticospinal tracts extending to the entire sensorimotor cortex, while the tensor-based method only identified a narrow subset of tracts extending medially to the vertex. CONCLUSIONS This comprehensive study shows that the most widely used clinical tractography method (diffusion tensor imaging-based tractography) results in systematically unreliable and clinically misleading information. The higher-order tractography model, using the same diffusion-weighted data, clearly demonstrates fiber tracts more accurately, providing improved estimates of safety margins that may be useful in neurosurgical procedures. We therefore need to move beyond the diffusion tensor framework if we are to begin to provide neurosurgeons with biologically reliable tractography information.


NeuroImage | 2012

Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images.

David Raffelt; Jacques-Donald Tournier; Stephen E. Rose; Gerard R. Ridgway; Robert D. Henderson; Stuart Crozier; Olivier Salvado; Alan Connelly

This article proposes a new measure called Apparent Fibre Density (AFD) for the analysis of high angular resolution diffusion-weighted images using higher-order information provided by fibre orientation distributions (FODs) computed using spherical deconvolution. AFD has the potential to provide specific information regarding differences between populations by identifying not only the location, but also the orientations along which differences exist. In this work, analytical and numerical Monte-Carlo simulations are used to support the use of the FOD amplitude as a quantitative measure (i.e. AFD) for population and longitudinal analysis. To perform robust voxel-based analysis of AFD, we present and evaluate a novel method to modulate the FOD to account for changes in fibre bundle cross-sectional area that occur during spatial normalisation. We then describe a novel approach for statistical analysis of AFD that uses cluster-based inference of differences extended throughout space and orientation. Finally, we demonstrate the capability of the proposed method by performing voxel-based AFD comparisons between a group of Motor Neurone Disease patients and healthy control subjects. A significant decrease in AFD was detected along voxels and orientations corresponding to both the corticospinal tract and corpus callosal fibres that connect the primary motor cortices. In addition to corroborating previous findings in MND, this study demonstrates the clear advantage of using this type of analysis by identifying differences along single fibre bundles in regions containing multiple fibre populations.


NeuroImage | 2014

Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data

Ben Jeurissen; Jacques-Donald Tournier; Thijs Dhollander; Alan Connelly; Jan Sijbers

Constrained spherical deconvolution (CSD) has become one of the most widely used methods to extract white matter (WM) fibre orientation information from diffusion-weighted MRI (DW-MRI) data, overcoming the crossing fibre limitations inherent in the diffusion tensor model. It is routinely used to obtain high quality fibre orientation distribution function (fODF) estimates and fibre tractograms and is increasingly used to obtain apparent fibre density (AFD) measures. Unfortunately, CSD typically only supports data acquired on a single shell in q-space. With multi-shell data becoming more and more prevalent, there is a growing need for CSD to fully support such data. Furthermore, CSD can only provide high quality fODF estimates in voxels containing WM only. In voxels containing other tissue types such as grey matter (GM) and cerebrospinal fluid (CSF), the WM response function may no longer be appropriate and spherical deconvolution produces unreliable, noisy fODF estimates. The aim of this study is to incorporate support for multi-shell data into the CSD approach as well as to exploit the unique b-value dependencies of the different tissue types to estimate a multi-tissue ODF. The resulting approach is dubbed multi-shell, multi-tissue CSD (MSMT-CSD) and is compared to the state-of-the-art single-shell, single-tissue CSD (SSST-CSD) approach. Using both simulations and real data, we show that MSMT-CSD can produce reliable WM/GM/CSF volume fraction maps, directly from the DW data, whereas SSST-CSD has a tendency to overestimate the WM volume in voxels containing GM and/or CSF. In addition, compared to SSST-CSD, MSMT-CSD can substantially increase the precision of the fODF fibre orientations and reduce the presence of spurious fODF peaks in voxels containing GM and/or CSF. Both effects translate into more reliable AFD measures and tractography results with MSMT-CSD compared to SSST-CSD.


Magnetic Resonance in Medicine | 2002

Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations

Jacques-Donald Tournier; Fernando Calamante; Martin D. King; David G. Gadian; Alan Connelly

Diffusion tensor fiber tracking potentially can give information about in vivo brain connectivity. However, this technique is difficult to validate due to the lack of a gold standard. Fiber tracking reliability will depend on the quality of the data and on the robustness of the algorithms used. Information about the effects of various anatomical and image acquisition parameters on fiber tracking reliability may be used in the design of imaging sequences and of tracking algorithms. In this study, tracking was performed on two different simulated models to study the effects on tracking quality of SNR, anisotropy, curvature, fiber cross‐section, background anisotropy, step size, and interpolation. Tracking was also performed on volunteer data to assess the relevance of the simulations to real data. Our results show that, in general, tracking with high SNR and high anisotropy using interpolation and a low step size gives the most reliable results. Partial volume effects are shown to have a detrimental effect when the background is anisotropic and when tracking narrow fibers. The results derived from real data show similar trends and thus support the findings of the simulations. These simulations may therefore help to determine which structures can be tracked for a given image quality. Magn Reson Med 47:701–708, 2002.

Collaboration


Dive into the Jacques-Donald Tournier's collaboration.

Top Co-Authors

Avatar

Alan Connelly

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graeme D. Jackson

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Robert E. Smith

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

David Raffelt

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge