Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques Le Pendu is active.

Publication


Featured researches published by Jacques Le Pendu.


Journal of Medical Virology | 2008

Norwalk virus: How infectious is it?†

Peter Teunis; Christine L. Moe; Pengbo Liu; Sara E. Miller; Lisa C. Lindesmith; Ralph S. Baric; Jacques Le Pendu; Rebecca L. Calderon

Noroviruses are major agents of viral gastroenteritis worldwide. The infectivity of Norwalk virus, the prototype norovirus, has been studied in susceptible human volunteers. A new variant of the hit theory model of microbial infection was developed to estimate the variation in Norwalk virus infectivity, as well as the degree of virus aggregation, consistent with independent (electron microscopic) observations. Explicit modeling of viral aggregation allows us to express virus infectivity per single infectious unit (particle). Comparison of a primary and a secondary inoculum showed that passage through a human host does not change Norwalk virus infectivity. We estimate the average probability of infection for a single Norwalk virus particle to be close to 0.5, exceeding that reported for any other virus studied to date. Infected subjects had a dose‐dependent probability of becoming ill, ranging from 0.1 (at a dose of 103 NV genomes) to 0.7 (at 108 virus genomes). A norovirus dose response model is important for understanding its transmission and essential for development of a quantitative risk model. Norwalk virus is a valuable model system to study virulence because genetic factors are known for both complete and partial protection; the latter can be quantitatively described as heterogeneity in dose response models. J. Med. Virol. 80:1468–1476, 2008.


Gastroenterology | 2002

Norwalk Virus Binds to Histo-Blood Group Antigens Present on Gastroduodenal Epithelial Cells of Secretor Individuals

Séverine Marionneau; Nathalie Ruvoen; Beatrice Le Moullac–Vaidye; Monique Clément; Anne Thomas; Guillermo Ruiz–Palacois; Pengwei Huang; Xi Jiang; Jacques Le Pendu

Abstract Background & Aims: Norwalk Virus (NV) is a member of the Caliciviridae family, which causes acute epidemic gastroenteritis in humans of all ages and its cellular receptors have not yet been characterized. Another calicivirus, Rabbit Hemorrhagic Disease Virus, attaches to H type 2 histo-blood group oligosaccharide present on rabbit epithelial cells. Our aim was to test if, by analogy, recombinant NV-like particles (rNV VLPs) use carbohydrates present on human gastroduodenal epithelial cells as ligands. Methods: Attachment of rNV VLPs was tested on tissue sections of the gastroduodenal junction and on saliva from individuals of known ABO, Lewis, and secretor phenotypes. It was also tested on human Caco-2 cells and on animal cell lines transfected with glycosyltransferases complementary DNA (cDNA). Competition experiments were performed with synthetic oligosaccharides and anticarbohydrate antibodies. Internalization was monitored by confocal microscopy. Results: Attachment of rNV VLPs to surface epithelial cells of the gastroduodenal junction as well as to saliva was detected, yet only from secretor donors. It was abolished by α1,2fucosidase treatment, and by competition with the H types 1 and 3 trisaccharides or with anti-H type 1 and anti-H types¾ antibodies. Transfection of CHO and TS/A cells with an α1,2fucosyltransferase cDNA allowed attachment of VLPs. These transfectants as well as differentiated Caco-2 cells expressing H type 1 structures internalized the bound particles. Conclusions: rNV VLPs use H type 1 and/or H types¾ as ligands on gastroduodenal epithelial cells of secretor individuals. GASTROENTEROLOGY 2002;122:1967-1977


Biochimie | 2001

ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world

Séverine Marionneau; Anne Cailleau-Thomas; Jézabel Rocher; Béatrice Le Moullac-Vaidye; Nathalie Ruvoën; Monique Clément; Jacques Le Pendu

Antigens of the ABH and Lewis histo-blood group family have been known for a long time. Yet their biological meaning is still largely obscure. Based on the available knowledge about the genes involved in their biosynthesis and about their tissue distribution in humans and other mammals, we discuss here the selective forces that may maintain or propagate these oligosaccharide antigens. The ABO, alpha 1,2fucosyltransferase and alpha 1,3fucosyltransferase enzyme families have been generated by gene duplications. Members of these families contribute to biosynthesis of the antigens through epistatic interactions. We suggest that the highly polymorphic genes of each family provide intraspecies diversity that allows coping with diverse and rapidly evolving pathogens. In contrast, the genes of low frequency polymorphism are expected to play roles at the cellular level, although they may be dispensable at the individual level. In addition, some members of these three gene families are expected to be functionally redundant and may either provide a reservoir for additional diversity in the future or become inactivated. We also discuss the role of the ABH and Lewis histo-blood group antigens in pathologies such as cancer and cardiovascular diseases, but argue that it is merely incidental and devoid of evolutionary impact.


Emerging Infectious Diseases | 2006

Norwalk virus-specific binding to oyster digestive tissues

Françoise S. Le Guyader; Fabienne Loisy; Robert L. Atmar; Anne M. Hutson; Mary K. Estes; Nathalie Ruvoën-Clouet; Monique Pommepuy; Jacques Le Pendu

Specific binding of virus to oysters can selectively concentrate a human pathogen.


Nature | 2012

Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen

Liya Hu; Sue E. Crawford; Rita Czakó; Nicolas Cortes-Penfield; David F. Smith; Jacques Le Pendu; Mary K. Estes; B. V. Venkataram Prasad

As with many other viruses, the initial cell attachment of rotaviruses, which are the major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans. The distally located VP8* domain of the rotavirus spike protein VP4 (ref. 5) mediates such interactions. The existing paradigm is that ‘sialidase-sensitive’ animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas ‘sialidase-insensitive’ human rotavirus strains bind to glycans with internal Sia such as GM1 (ref. 3). Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies, it is not yet known how VP8* of human rotaviruses interacts with Sia and whether their cell attachment necessarily involves sialoglycans. Here we show that VP8* of a human rotavirus strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-A-type antibodies as well as significantly enhanced in Chinese hamster ovary cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of human rotavirus. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelia and on red blood cells, and are recognized as susceptibility and cell attachment factors for gastric pathogens like Helicobacter pylori and noroviruses. Our crystallographic studies show that the A-type HBGA binds to the human rotavirus VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific human rotavirus strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world’s population.


Apmis | 2001

ABH and Lewis histo-blood group antigens in cancer

Jacques Le Pendu; Séverine Marionneau; Anne Cailleau-Thomas; Jézabel Rocher; Béatrice Le Moullac-Vaidye; Monique Clément

Antigens of the ABH and Lewis histo‐blood group family can be found on many normal cells, mainly of epithelial type. In carcinomas, altered expression of the various carbohydrate epitopes of this family occur, and are often strongly associated with either a good or bad prognosis. A review of the available data on these tumor‐associated markers, their biosynthesis and their prognostic value is proposed here. For a long time it has been unclear whether their presence could affect the behavior of carcinoma cells. Recent data, however, indicate that they play biological roles in the course of tumor progression. The presence of sialyl‐Lea or sialyl‐Lex, which are ligands for selectins, promotes the metastatic process by facilitating interaction with the endothelium of distant organs. The loss of A and B antigens increases cellular motility, while the presence of H epitopes increases resistance to apoptosis by mechanisms that remain to be defined. The Ley antigen has procoagulant and angiogenic activities. All these observations are used to present a model that may account for the described associations between the presence or loss of these markers and the outcome of disease. Finally, their potential clinical applicaitons as tumor‐associated markers or as targets of immunotherapy are reviewed.


Veterinary Research | 2012

Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review

Joana Abrantes; Wessel van der Loo; Jacques Le Pendu; Pedro J. Esteves

Rabbit haemorrhagic disease virus (RHDV) is a calicivirus of the genus Lagovirus that causes rabbit haemorrhagic disease (RHD) in adult European rabbits (Oryctolagus cuniculus). First described in China in 1984, the virus rapidly spread worldwide and is nowadays considered as endemic in several countries. In Australia and New Zealand where rabbits are pests, RHDV was purposely introduced for rabbit biocontrol. Factors that may have precipitated RHD emergence remain unclear, but non-pathogenic strains seem to pre-date the appearance of the pathogenic strains suggesting a key role for the comprehension of the virus origins. All pathogenic strains are classified within one single serotype, but two subtypes are recognised, RHDV and RHDVa. RHD causes high mortality in both domestic and wild adult animals, with individuals succumbing between 48-72 h post-infection. No other species has been reported to be fatally susceptible to RHD. The disease is characterised by acute necrotising hepatitis, but haemorrhages may also be found in other organs, in particular the lungs, heart, and kidneys due to disseminated intravascular coagulation. Resistance to the disease might be explained in part by genetically determined absence or weak expression of attachment factors, but humoral immunity is also important. Disease control in rabbitries relies mainly on vaccination and biosecurity measures. Such measures are difficult to be implemented in wild populations. More recent research has indicated that RHDV might be used as a molecular tool for therapeutic applications. Although the study of RHDV and RHD has been hampered by the lack of an appropriate cell culture system for the virus, several aspects of the replication, epizootology, epidemiology and evolution have been disclosed. This review provides a broad coverage and description of the current knowledge on the disease and the virus.


Seminars in Immunology | 2006

Mendelian resistance to human norovirus infections

Jacques Le Pendu; Nathalie Ruvoën-Clouet; Elin Kindberg; Lennart Svensson

Abstract Noroviruses have emerged as a major cause of acute gastroenteritis in humans of all ages. Despite high infectivity of the virus and lack of long-term immunity, volunteer and authentic studies has suggested the existence of inherited protective factors. Recent studies have shown that histo-blood group antigens (HBGAs) and in particular secretor status controlled by the α1,2fucosyltransferase FUT2 gene determine susceptibility to norovirus infections, with nonsecretors (FUT2−/−), representing 20% of Europeans, being highly resistant to symptomatic infections with major strains of norovirus. Moreover, the capsid protein from distinct strains shows different HBGA specificities, suggesting a host–pathogen co-evolution driven by carbohydrate–protein interactions.


Journal of Virology | 2000

Binding of Rabbit Hemorrhagic Disease Virus to Antigens of the ABH Histo-Blood Group Family

Nathalie Ruvoën-Clouet; Jean Pierre Ganière; Geneviève André-Fontaine; Dominique Blanchard; Jacques Le Pendu

ABSTRACT The ability of rabbit hemorrhagic disease virus to agglutinate human erythrocytes and to attach to rabbit epithelial cells of the upper respiratory and digestive tracts was shown to depend on the presence of ABH blood group antigens. Indeed, agglutination was inhibited by saliva from secretor individuals but not from nonsecretors, the latter being devoid of H antigen. In addition, erythrocytes of the rare Bombay phenotype, which completely lack ABH antigens, were not agglutinated. Native viral particles from extracts of infected rabbit liver as well as virus-like particles from the recombinant virus capsid protein specifically bound to synthetic A and H type 2 blood group oligosaccharides. Both types of particles could attach to adult rabbit epithelial cells of the upper respiratory and digestive tracts. This binding paralleled that of anti-H type 2 blood group reagents and was inhibited by the H type 2-specific lectin UEA-I and polyacrylamide-conjugated H type 2 trisaccharide. Young rabbit tissues were almost devoid of A and H type 2 antigens, and only very weak binding of virus particles could be obtained on these tissues.


The Journal of Infectious Diseases | 2005

Influence of the Combined ABO, FUT2 and FUT3 Polymorphism on Susceptibility to Norwalk Virus Attachment

Séverine Marionneau; Fabrice Airaud; Nicolai V. Bovin; Jacques Le Pendu; Nathalie Ruvoën-Clouet

The binding of Norwalk virus (NV) recombinant capsids was tested in a panel of saliva samples collected from 96 donors with different ABO, secretor, and Lewis phenotypes. As previously reported, binding occurred specifically to saliva from secretors, regardless of their Lewis phenotype status. Blood group B saliva was poorly recognized, whereas binding to blood group O saliva was higher and binding to blood group A saliva was highest. Transfection of either blood group A or B enzyme into H epitope-expressing cells showed that masking of H epitopes by the A and B antigens blocked the attachment of NV capsids. The high level of binding to blood group A secretor saliva could be explained by an optimal H type 1 ligand density, which was lower than that in blood group O saliva and much higher than that in blood group B saliva. Indeed, despite a higher ligand density, saliva from homozygotes with 2 functional FUT2 alleles was less strongly recognized than saliva from heterozygotes with 1 functional and 1 inactivated FUT2 allele. Partial fucosidase treatment of duodenal tissue sections and binding to a synthetic probe with varying densities of H type 1 trisaccharide indicated that optimal attachment occurred at medium ligand density.

Collaboration


Dive into the Jacques Le Pendu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolai V. Bovin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Marchandeau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge