Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques P. Tremblay is active.

Publication


Featured researches published by Jacques P. Tremblay.


Cell Transplantation | 1993

Results of a Triple Blind Clinical Study of Myoblast Transplantations without Immunosuppressive Treatment in Young Boys with Duchenne Muscular Dystrophy

Jacques P. Tremblay; F. Malouin; Raynald Roy; Johnny Huard; Jean-Pierre Bouchard; A. Satoh; C.L. Richards

The effects of myoblast transplantations without an immunosuppressive treatment on muscle strength, and the formation of dystrophin-positive fibers was studied in five young boys with Duchenne muscular dystrophy (DMD) using a triple blind design. Injections of myoblasts were made into one biceps brachii (BB), and the opposite BB, used as a control, was sham-injected; the experimenters and the patient were blind to the myoblast-injected side. At the same time, myoblasts were also injected in the left tibialis anterior (TA) of these patients. The strength developed during maximal static contractions of the elbow flexor and extensor muscles was measured with a Kin-Com dynamometer. No increase in static elbow flexion torque was measured at any time from 2 mo up to 18 mo after the transplantation. One month after the transplantation, the percentage of dystrophin-positive fibers in the myoblast-injected TA ranged from 0 to 36%, while it ranged from 0 to 4% on the control side. The expression of dystrophin in these fibers, however, was generally low, and most likely less than 10% of the normal level. In the biceps brachii of both sides 6 mo after the transplantation, less than 1.5% of dystrophin-positive fibers were detected. The injections also triggered a humoral immune response of the host. Antibodies were capable of fixing the complement, and of lysing the newly formed myotubes. One of the antigens recognized by this immune response is possibly dystrophin. These results strongly suggest that myoblast transplantations, as well as gene therapy for DMD, cannot be done without immunosuppression.


Muscle & Nerve | 1994

Very efficient myoblast allotransplantation in mice under FK506 immunosuppression

Ikuo Kinoshita; Jean-Thomas Vilquin; Benoǐt Guérette; Isabelle Asselin; Raynald Roy; Jacques P. Tremblay

Transgenic CD1 mice expressing β‐galactosidase were used as myoblast donors. The myoblasts were injected in normal or mdx muscles previously irradiated and injected with notexin. Twenty‐eight days after myoblast transplantation, the percentage of muscle fibers β‐galactosidase‐positive was low in mice not immunosuppressed but was high (80%) in those treated with FK506. In mdx mice, muscle fibers expressing β‐galactosidase were also dystrophin positive. Most of the mice not treated with FK506 produced antibodies against the donor myoblasts. These results indicate that FK506 is a very useful immunosuppressive drug for myoblast transplantation in mice. Irradiation and notexin injection used in our experiments are, however, not feasible in humans. Other manipulations capable of increasing the participation of donor myoblasts to regeneration will therefore have to be identified before new clinical trials are attempted.


Journal of Neuropathology and Experimental Neurology | 2006

Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells.

Daniel Skuk; Marlyne Goulet; Brigitte Roy; Pierre Chapdelaine; Jean-Pierre Bouchard; Raynald Roy; Francine J. Dugré; Michel Sylvain; Jean-Guy Lachance; Louise Deschênes; Hélène Senay; Jacques P. Tremblay

A clinical trial was conducted to test a new protocol of normal muscle precursor cell (MPC) allotransplantation in skeletal muscles of patients with Duchenne muscular dystrophy (DMD). Cultured MPCs obtained from one of the patients parents were implanted in 0.25 or 1 cm3 of a Tibialis anterior in 9 patients with DMD. MPC injections were placed 1 to 2 mm from each other, and a similar pattern of saline injections was done in the contralateral muscle. The patients were immunosuppressed with tacrolimus. Muscle biopsies were performed at the injected sites 4 weeks later. In the biopsies of the cell-grafted sites, there were myofibers expressing donors dystrophin in 8 patients. The percentage of myofibers expressing donors dystrophin varied from 3.5% to 26%. Evidence of small myofiber neoformation was observed in some patients. Donor-derived dystrophin transcripts were detected by reverse transcriptase-polymerase chain reaction in the cell-grafted sites in all patients. The protocol of immunosuppression was sufficient to obtain these results, although it is not certain whether acute rejection was efficiently controlled in all the cases. In conclusion, intramuscular allotransplantation of normal MPCs can induce the expression of donor-derived dystrophin in skeletal muscles of patients with DMD, although this expression is restricted to the sites of MPC injection.


Journal of Clinical Investigation | 1994

High efficiency of muscle regeneration after human myoblast clone transplantation in SCID mice.

Johnny Huard; Steeve Verreault; Raynald Roy; Martine Tremblay; Jacques P. Tremblay

SCID mouse tibialis anterior muscles were first irradiated to prevent regeneration by host myoblasts and injected with notexin to damage the muscle fibers and trigger regeneration. The muscles were then injected with roughly 5 million human myoblasts. 1 mo later, 16-33% of the normal number of muscle fibers were present in the injected muscle, because of incomplete regeneration. However, > 90% of these muscle fibers contained human dystrophin. Some newly formed muscle fibers had an accumulation of human dystrophin and desmin on a part of their membrane. Such accumulations have been demonstrated at neuromuscular junctions before suggesting that the new muscle fibers are innervated and functional. The same pool of clones of human myoblasts produced only < or = 4% of muscle fibers containing human dystrophin when injected in nude mice muscles. Several of the human myoblasts did not fuse and remained in interstitial space or tightly associated with muscle fibers suggesting that some of them have formed satellite cells. Moreover, cultures of 98% pure human myoblasts were obtained from transplanted SCID muscles. In some mice where the muscle regeneration was not complete, the muscle fibers containing human dystrophin also expressed uniformly HLA class 1, confirming that the fibers are of human origin. The presence of hybrid muscle fibers containing human dystrophin and mouse MHC was also demonstrated following transplantation. These results establish that in absence of an immune reaction, transplanted human myoblasts participate to the muscle regeneration with a high degree of efficacy even if the animals were killed only 1 mo after the transplantation.


Molecular Therapy | 2011

Current Status of Pharmaceutical and Genetic Therapeutic Approaches to Treat DMD

Christophe Pichavant; Annemieke Aartsma-Rus; Paula R. Clemens; Kay E. Davies; George Dickson; Shin'ichi Takeda; S.D. Wilton; Jon A. Wolff; Christine I. Wooddell; Xiao Xiao; Jacques P. Tremblay

Duchenne muscular dystrophy (DMD) is a genetic disease affecting about one in every 3,500 boys. This X-linked pathology is due to the absence of dystrophin in muscle fibers. This lack of dystrophin leads to the progressive muscle degeneration that is often responsible for the death of the DMD patients during the third decade of their life. There are currently no curative treatments for this disease but different therapeutic approaches are being studied. Gene therapy consists of introducing a transgene coding for full-length or a truncated version of dystrophin complementary DNA (cDNA) in muscles, whereas pharmaceutical therapy includes the use of chemical/biochemical substances to restore dystrophin expression or alleviate the DMD phenotype. Over the past years, many potential drugs were explored. This led to several clinical trials for gentamicin and ataluren (PTC124) allowing stop codon read-through. An alternative approach is to induce the expression of an internally deleted, partially functional dystrophin protein through exon skipping. The vectors and the methods used in gene therapy have been continually improving in order to obtain greater encapsidation capacity and better transduction efficiency. The most promising experimental approaches using pharmaceutical and gene therapies are reviewed in this article.


Neuromuscular Disorders | 1997

Muscle fibers of mdx mice are more vulnerable to exercise than those of normal mice.

Valentine Brussee; François Tardif; Jacques P. Tremblay

It is well known that eccentric exercise induces muscle damage by disrupting the sarcolemma. The aim of this study was to analyze the effects of downhill running on several locomotor and respiratory muscles of normal and mdx mice. Degenerating muscle fibers in the skeletal muscles of mice were visualized by in vivo staining with Evans blue. This dye injected intravenously stained only degenerating muscle fibers which were visible as blue fibers macroscopically and could also be seen as red fluorescent fibers microscopically. Evans blue-stained muscle fibers were either hypercontracted or degenerating. Without exercise no muscle fibers were labeled with Evans blue in the normal mice, indicating that their membranes were intact. However, even without exercise, the percentage of fibers permeable to Evans blue varied from 2% to 15% in various muscles of the mdx mice. Our downhill running protocol (i.e., running down a treadmill with a 15 degrees slope at 10 m/min) produced in normal mice only a slight (0-3%) increase in percentage of muscle fibers which were permeable to the dye compared with up to 31% in some mdx muscles.


Molecular Therapy | 2013

Reading Frame Correction by Targeted Genome Editing Restores Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients

David G. Ousterout; Pablo Perez-Pinera; Pratiksha I. Thakore; Ami M. Kabadi; Matthew T. Brown; Xiaoxia Qin; Olivier Fedrigo; Vincent Mouly; Jacques P. Tremblay; Charles A. Gersbach

Genome editing with engineered nucleases has recently emerged as an approach to correct genetic mutations by enhancing homologous recombination with a DNA repair template. However, many genetic diseases, such as Duchenne muscular dystrophy (DMD), can be treated simply by correcting a disrupted reading frame. We show that genome editing with transcription activator-like effector nucleases (TALENs), without a repair template, can efficiently correct the reading frame and restore the expression of a functional dystrophin protein that is mutated in DMD. TALENs were engineered to mediate highly efficient gene editing at exon 51 of the dystrophin gene. This led to restoration of dystrophin protein expression in cells from Duchenne patients, including skeletal myoblasts and dermal fibroblasts that were reprogrammed to the myogenic lineage by MyoD. Finally, exome sequencing of cells with targeted modifications of the dystrophin locus showed no TALEN-mediated off-target changes to the protein-coding regions of the genome, as predicted by in silico target site analysis. This strategy integrates the rapid and robust assembly of active TALENs with an efficient gene-editing method for the correction of genetic diseases caused by mutations in non-essential coding regions that cause frameshifts or premature stop codons.


Experimental Neurology | 2002

Efficacy of Myoblast Transplantation in Nonhuman Primates Following Simple Intramuscular Cell Injections: Toward Defining Strategies Applicable to Humans

Daniel Skuk; Marlyne Goulet; Brigitte Roy; Jacques P. Tremblay

Nonhuman primates were used to define myoblast transplantation strategies applicable to humans. Nevertheless, previous experiments were based on the use of myotoxins concomitant with the myoblast injections. Since myotoxins must be avoided for clinical applications, we analyzed the efficacy of simple myoblast injections (i.e., myoblasts resuspended only in saline) into monkey muscles. We also evaluated different FK506 dosages (in combination or not with mycophenolate mofetil) for immunosuppression. Allogeneic myoblasts transduced with the beta-galactosidase (beta-Gal) gene were implanted in the muscles of 19 monkeys by injections placed 1 to 2 mm from each other. A biopsy was performed at the implanted sites 1 month later, and histologically studied for demonstration of beta-Gal+ myofibers, lymphocyte infiltration, and CD8+ cells. The presence of antibodies against the donor myoblasts and the blood levels of FK506 were analyzed. Our results show that: (1) If myoblast injections are sufficiently close to each other, high percentages of hybrid myofibers can be obtained following myoblast transplantation in primates (25 to 67% with an interinjection distance of 1 mm). (2) Efficient immunosuppression can be reached by increasing FK506 dosages, but also by combining this drug with mycophenolate mofetil, a combination that reduces toxic effects. The present results represent a step towards a better designing of myoblast transplantation strategies in humans.


Muscle & Nerve | 1998

Evidence of mdx mouse skeletal muscle fragility in vivo by eccentric running exercise

Jean-Thomas Vilquin; Valentine Brussee; Isabelle Asselin; Ikuo Kinoshita; Marc Gingras; Jacques P. Tremblay

Duchenne muscular dystrophy is an X‐linked devastating disease due to the lack of expression of a functional dystrophin. Unfortunately, the dystrophin‐deficient mdx mouse model does not present clinical signs of dystrophy before the age of 18 months, and the role of dystrophin in fiber integrity is not fully understood. The fragility of the skeletal muscle fibers was investigated in transgenic mice expressing β‐galactosidase under the control of a muscle specific promoter. Adult mdx/β‐galactosidase (dystrophin‐negative) and normal/β‐galactosidase (dystrophin‐positive) mice were submitted to one short session of eccentric, downhill running exercise. The leakage of muscle enzymes creatine kinase and β‐galactosidase was investigated before, 1 h after, and 3 days after the running session. A significant and transient rise in the level of these enzymes was noted in the serum of mdx mice following the exercise session. Thus, the lack of dystrophin in the mdx model led to local microdamages to the exercised muscle allowing leakage of proteins from the fibers. The peak leakage was transient, suggesting that muscle fiber lesions were rapidly repaired following this short, noninvasive eccentric running session.


Journal of Muscle Research and Cell Motility | 2003

Myoblast transplantation: the current status of a potential therapeutic tool for myopathies

Daniel Skuk; Jacques P. Tremblay

The implantation of cultured myogenic cells into the body (myoblast transplantation) is an experimental strategy that is being explored for the potential treatment of myopathies. Its potential benefits should be: (1) to slow down or to stop muscle degeneration, and/or (2) to increase force in wasted muscles. For these objectives, myoblast transplantation may act by two actions: (1) genetic complementation (as a vehicle of normal genes in the case of genetic myopathies), and (2) increasing the myogenic pool of the muscle. During the last decade, myoblast transplantation seemed stagnant in a contradiction of experiments producing good results in mice, against the poor results of human trials. This contradiction was apparent, since the conditions used in mouse models were largely different from those used in dystrophic patients. Our monkey experiments demonstrated that promising results can be observed in large muscles of primates, but under conditions that differ from those previously used in patients. These conditions are: (1) an appropriate immunosuppression, and (2) a careful distribution of sufficient quantities of myoblasts into the recipient muscles. Most of the work on myoblast transplantation is addressed to improve this method by: (1) reducing or avoiding the toxicity of sustained immunosuppression, (2) favoring donor-myoblast migration into the recipient muscle, and (3) defining the factors implicated in the early donor-cell survival following intramuscular implantation. Other research subjects in this field are the potential use of pluripotent stem cells instead of satellite cells, and the potential delivery of the exogenous myogenic cells by the blood stream.

Collaboration


Dive into the Jacques P. Tremblay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge