Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques Rougemont is active.

Publication


Featured researches published by Jacques Rougemont.


Systematic Biology | 2008

A Rapid Bootstrap Algorithm for the RAxML Web Servers

Alexandros Stamatakis; Paul Hoover; Jacques Rougemont

Despite recent advances achieved by application of high-performance computing methods and novel algorithmic techniques to maximum likelihood (ML)-based inference programs, the major computational bottleneck still consists in the computation of bootstrap support values. Conducting a probably insufficient number of 100 bootstrap (BS) analyses with current ML programs on large datasets-either with respect to the number of taxa or base pairs-can easily require a month of run time. Therefore, we have developed, implemented, and thoroughly tested rapid bootstrap heuristics in RAxML (Randomized Axelerated Maximum Likelihood) that are more than an order of magnitude faster than current algorithms. These new heuristics can contribute to resolving the computational bottleneck and improve current methodology in phylogenetic analyses. Computational experiments to assess the performance and relative accuracy of these heuristics were conducted on 22 diverse DNA and AA (amino acid), single gene as well as multigene, real-world alignments containing 125 up to 7764 sequences. The standard BS (SBS) and rapid BS (RBS) values drawn on the best-scoring ML tree are highly correlated and show almost identical average support values. The weighted RF (Robinson-Foulds) distance between SBS- and RBS-based consensus trees was smaller than 6% in all cases (average 4%). More importantly, RBS inferences are between 8 and 20 times faster (average 14.73) than SBS analyses with RAxML and between 18 and 495 times faster than BS analyses with competing programs, such as PHYML or GARLI. Moreover, this performance improvement increases with alignment size. Finally, we have set up two freely accessible Web servers for this significantly improved version of RAxML that provide access to the 200-CPU cluster of the Vital-IT unit at the Swiss Institute of Bioinformatics and the 128-CPU cluster of the CIPRES project at the San Diego Supercomputer Center. These Web servers offer the possibility to conduct large-scale phylogenetic inferences to a large part of the community that does not have access to, or the expertise to use, high-performance computing resources.


Nature | 2010

KAP1 controls endogenous retroviruses in embryonic stem cells.

Helen M. Rowe; Johan Jakobsson; Daniel Mesnard; Jacques Rougemont; Séverine Reynard; Tugce Aktas; Pierre V Maillard; Hillary Layard-Liesching; Sonia Verp; François Spitz; Daniel B. Constam; Didier Trono

More than forty per cent of the mammalian genome is derived from retroelements, of which about one-quarter are endogenous retroviruses (ERVs). Some are still active, notably in mice the highly polymorphic early transposon (ETn)/MusD and intracisternal A-type particles (IAP). ERVs are transcriptionally silenced during early embryogenesis by histone and DNA methylation (and reviewed in ref. 7), although the initiators of this process, which is essential to protect genome integrity, remain largely unknown. KAP1 (KRAB-associated protein 1, also known as tripartite motif-containing protein 28, TRIM28) represses genes by recruiting the histone methyltransferase SETDB1, heterochromatin protein 1 (HP1) and the NuRD histone deacetylase complex, but few of its physiological targets are known. Two lines of evidence suggest that KAP1-mediated repression could contribute to the control of ERVs: first, KAP1 can trigger permanent gene silencing during early embryogenesis, and second, a KAP1 complex silences the retrovirus murine leukaemia virus in embryonic cells. Consistent with this hypothesis, here we show that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos. We further demonstrate that KAP1 acts synergistically with DNA methylation to silence IAP elements, and that it is enriched at the 5′ untranslated region (5′UTR) of IAP genomes, where KAP1 deletion leads to the loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of KAP1-mediated repression. Correspondingly, IAP 5′UTR sequences can impose in cis KAP1-dependent repression on a heterologous promoter in ES cells. Our results establish that KAP1 controls endogenous retroelements during early embryonic development.


PLOS Biology | 2011

Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver

Guillaume Rey; François Cesbron; Jacques Rougemont; Hans Reinke; Michael Brunner; Felix Naef

Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator.


Nature Genetics | 2009

Comparative genomic and phylogeographic analysis of Mycobacterium leprae.

Marc Monot; Nadine Honoré; Thierry Garnier; Nora Zidane; Diana Sherafi; Alberto Paniz-Mondolfi; Masanori Matsuoka; G. Michael Taylor; Helen D. Donoghue; Abi Bouwman; Simon Mays; Claire Watson; Diana N. J. Lockwood; Ali Khamispour; Yahya Dowlati; Shen Jianping; Thomas H. Rea; Lucio Vera-Cabrera; Mariane Martins de Araújo Stefani; Sayera Banu; Murdo Macdonald; Bishwa Raj Sapkota; John S. Spencer; Jérôme Thomas; Keith Harshman; Pushpendra Singh; Philippe Busso; Alexandre Gattiker; Jacques Rougemont; Patrick J. Brennan

Reductive evolution and massive pseudogene formation have shaped the 3.31-Mb genome of Mycobacterium leprae, an unculturable obligate pathogen that causes leprosy in humans. The complete genome sequence of M. leprae strain Br4923 from Brazil was obtained by conventional methods (6× coverage), and Illumina resequencing technology was used to obtain the sequences of strains Thai53 (38× coverage) and NHDP63 (46× coverage) from Thailand and the United States, respectively. Whole-genome comparisons with the previously sequenced TN strain from India revealed that the four strains share 99.995% sequence identity and differ only in 215 polymorphic sites, mainly SNPs, and by 5 pseudogenes. Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world. The 16 SNP subtypes showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.


Cancer Research | 2005

Gene Expression Profiling Identifies Molecular Subtypes of Inflammatory Breast Cancer

François Bertucci; Pascal Finetti; Jacques Rougemont; Emmanuelle Charafe-Jauffret; Nathalie Cervera; Carole Tarpin; Catherine Nguyen; Luc Xerri; Rémi Houlgatte; Jocelyne Jacquemier; Patrice Viens; Daniel Birnbaum

Breast cancer is a heterogeneous disease. Comprehensive gene expression profiles obtained using DNA microarrays have revealed previously indistinguishable subtypes of noninflammatory breast cancer (NIBC) related to different features of mammary epithelial biology and significantly associated with survival. Inflammatory breast cancer (IBC) is a rare, particular, and aggressive form of disease. Here we have investigated whether the five molecular subtypes described for NIBC (luminal A and B, basal, ERBB2 overexpressing, and normal breast-like) were also present in IBC. We monitored the RNA expression of approximately 8,000 genes in 83 breast tissue samples including 37 IBC, 44 NIBC, and 2 normal breast samples. Hierarchical clustering identified the five subtypes of breast cancer in both NIBC and IBC samples. These subtypes were highly similar to those defined in previous studies and associated with similar histoclinical features. The robustness of this classification was confirmed by the use of both alternative gene set and analysis method, and the results were corroborated at the protein level. Furthermore, we show that the differences in gene expression between NIBC and IBC and between IBC with and without pathologic complete response that we have recently reported persist in each subtype. Our results show that the expression signatures defining molecular subtypes of NIBC are also present in IBC. Obtained using different patient series and different microarray platforms, they reinforce confidence in the expression-based molecular taxonomy but also give evidence for its universality in breast cancer, independently of a specific clinical form.


The New England Journal of Medicine | 2011

Probable Zoonotic Leprosy in the Southern United States

Richard W. Truman; Pushpendra Singh; Rahul Sharma; Philippe Busso; Jacques Rougemont; Alberto Paniz-Mondolfi; Adamandia Kapopoulou; Sylvain Brisse; David M. Scollard; Thomas P. Gillis; Stewart T. Cole

BACKGROUND In the southern region of the United States, such as in Louisiana and Texas, there are autochthonous cases of leprosy among native-born Americans with no history of foreign exposure. In the same region, as well as in Mexico, wild armadillos are infected with Mycobacterium leprae. METHODS Whole-genome resequencing of M. leprae from one wild armadillo and three U.S. patients with leprosy revealed that the infective strains were essentially identical. Comparative genomic analysis of these strains and M. leprae strains from Asia and Brazil identified 51 single-nucleotide polymorphisms and an 11-bp insertion-deletion. We genotyped these polymorphic sites, in combination with 10 variable-number tandem repeats, in M. leprae strains obtained from 33 wild armadillos from five southern states, 50 U.S. outpatients seen at a clinic in Louisiana, and 64 Venezuelan patients, as well as in four foreign reference strains. RESULTS The M. leprae genotype of patients with foreign exposure generally reflected their country of origin or travel history. However, a unique M. leprae genotype (3I-2-v1) was found in 28 of the 33 wild armadillos and 25 of the 39 U.S. patients who resided in areas where exposure to armadillo-borne M. leprae was possible. This genotype has not been reported elsewhere in the world. CONCLUSIONS Wild armadillos and many patients with leprosy in the southern United States are infected with the same strain of M. leprae. Armadillos are a large natural reservoir for M. leprae, and leprosy may be a zoonosis in the region. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Cancer Research | 2004

Gene Expression Profiling for Molecular Characterization of Inflammatory Breast Cancer and Prediction of Response to Chemotherapy

François Bertucci; Pascal Finetti; Jacques Rougemont; Emmanuelle Charafe-Jauffret; Valéry Nasser; Béatrice Loriod; Jacques Camerlo; Rebecca Tagett; Carole Tarpin; Gilles Houvenaeghel; Catherine Nguyen; Dominique Maraninchi; Jocelyne Jacquemier; Rémi Houlgatte; Daniel Birnbaum; Patrice Viens

Inflammatory breast cancer (IBC) is a rare but aggressive form of breast cancer with a 5-year survival limited to ∼40%. Diagnosis, based on clinical and/or pathological criteria, may be difficult. Optimal systemic neoadjuvant therapy and accurate predictors of pathological response have yet to be defined for increasing response rate and survival. Using DNA microarrrays containing ∼8,000 genes, we profiled breast cancer samples from 81 patients, including 37 with IBC and 44 with noninflammatory breast cancer (NIBC). Global unsupervised hierarchical clustering was able to some extent to distinguish IBC and NIBC cases and revealed subclasses of IBC. Supervised analysis identified a 109-gene set the expression of which discriminated IBC from NIBC samples. This molecular signature was validated in an independent series of 26 samples, with an overall performance accuracy of 85%. Discriminator genes were associated with various cellular processes possibly related to the aggressiveness of IBC, including signal transduction, cell motility, adhesion, and angiogenesis. A similar approach, with leave-one-out cross-validation, identified an 85-gene set that divided IBC patients with significantly different pathological complete response rate (70% in one group and 0% in the other group). These results show the potential of gene expression profiling to contribute to a better understanding of IBC, and to provide new diagnostic and predictive factors for IBC, as well as for potential therapeutic targets.


Immunity | 2015

The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation

Mario M. Zaiss; Alexis Rapin; Luc Lebon; Lalit Kumar Dubey; Ilaria Mosconi; Kerstin Sarter; Alessandra Piersigilli; Laure Menin; Alan W. Walker; Jacques Rougemont; Oonagh Paerewijck; Peter Geldhof; Kathleen McCoy; Andrew J. Macpherson; John Croese; Paul Giacomin; Alex Loukas; Tobias Junt; Benjamin J. Marsland; Nicola L. Harris

Summary Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions.


PLOS Biology | 2012

Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

Gwendal Le Martelot; Donatella Canella; Laura Symul; Eugenia Migliavacca; Federica Gilardi; Robin Liechti; Olivier Martin; Keith Harshman; Mauro Delorenzi; Béatrice Desvergne; Winship Herr; Bart Deplancke; Ueli Schibler; Jacques Rougemont; Nicolas Guex; Nouria Hernandez; Felix Naef

Genome-wide rhythms in RNA polymerase II loading and dynamic chromatin remodeling underlie periodic gene expression during diurnal cycles in the mouse liver.


BMC Bioinformatics | 2008

Probabilistic base calling of Solexa sequencing data

Jacques Rougemont; Arnaud Amzallag; Christian Iseli; Laurent Farinelli; Ioannis Xenarios; Felix Naef

BackgroundSolexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology.ResultsWe propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads.ConclusionWe show that the method improves genome coverage and number of usable tags as compared with Solexas data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexas fluorescence intensity files and the production of informative diagnostic plots.

Collaboration


Dive into the Jacques Rougemont's collaboration.

Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Felix Naef

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Stewart T. Cole

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Alexandre Gattiker

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Bart Deplancke

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Fabrice David

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Swapna Uplekar

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Busso

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge