Jacques Teyssier
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacques Teyssier.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Stephan Köhler; Vincent Foulongne; Safia Ouahrani-Bettache; Gisèle Bourg; Jacques Teyssier; Michel Ramuz; Jean-Pierre Liautard
The pathogen Brucella suis resides and multiplies within a phagocytic vacuole of its host cell, the macrophage. The resulting complex relationship has been investigated by the analysis of the set of genes required for virulence, which we call intramacrophagic virulome. Ten thousand two hundred and seventy-two miniTn5 mutants of B. suis constitutively expressing gfp were screened by fluorescence microscopy for lack of intracellular multiplication in human macrophages. One hundred thirty-one such mutants affected in 59 different genes could be isolated, and a function was ascribed to 53 of them. We identified genes involved in (i) global adaptation to the intracellular environment, (ii) amino acid, and (iii) nucleotide synthesis, (iv) sugar metabolism, (v) oxidoreduction, (vi) nitrogen metabolism, (vii) regulation, (viii) disulphide bond formation, and (ix) lipopolysaccharide biosynthesis. Results led to the conclusion that the replicative compartment of B. suis is poor in nutrients and characterized by low oxygen tension, and that nitrate may be used for anaerobic respiration. Intramacrophagic virulome analysis hence allowed the description of the nature of the replicative vacuole of the pathogen in the macrophage and extended our understanding of the niche in which B. suis resides. We propose calling this specific compartment “brucellosome.”
Cell Metabolism | 2009
Carine Chavey; Gwendal Lazennec; Sylviane Lagarrigue; Cyrielle Clapé; Irena Iankova; Jacques Teyssier; Jean-Sébastien Annicotte; Julien Schmidt; Chikage Mataki; Hiroyasu Yamamoto; Rosario Sanches; Anna Gumà; Vladimir Stich; Michaela Vitkova; Bénédicte Jardin-Watelet; Eric Renard; Robert M. Strieter; Antoinette Tuthill; Gökhan S. Hotamisligil; Antonio Vidal-Puig; Antonio Zorzano; Dominique Langin; Lluis Fajas
We show here high levels of expression and secretion of the chemokine CXC ligand 5 (CXCL5) in the macrophage fraction of white adipose tissue (WAT). Moreover, we find that CXCL5 is dramatically increased in serum of human obese compared to lean subjects. Conversely, CXCL5 concentration is decreased in obese subjects after a weight reduction program, or in obese non-insulin-resistant, compared to insulin-resistant, subjects. Most importantly we demonstrate that treatment with recombinant CXCL5 blocks insulin-stimulated glucose uptake in muscle in mice. CXCL5 blocks insulin signaling by activating the Jak2/STAT5/SOCS2 pathway. Finally, by treating obese, insulin-resistant mice with either anti-CXCL5 neutralizing antibodies or antagonists of CXCR2, which is the CXCL5 receptor, we demonstrate that CXCL5 mediates insulin resistance. Furthermore CXCR2-/- mice are protected against obesity-induced insulin resistance. Taken together, these results show that secretion of CXCL5 by WAT resident macrophages represents a link between obesity, inflammation, and insulin resistance.
Molecular Microbiology | 1996
Stephan Köhler; Jacques Teyssier; Axel Cloeckaert; Bruno Rouot; Jean-Pierre Liautard
In the intracellular bacterium Brucella suis, the molecular chaperone DnaK was induced under heat‐shock conditions and at low pH. Insertional inactivation of dnaK and dnaJ within the dnaK/J locus led to the conclusion that DnaK, but not DnaJ, was required for growth at 37°C in vitro. Viability of the dnaK null mutant was also greatly affected at low pH. Under conditions allowing intracellular multiplication, the infection of U937‐derived phagocytes resulted in long‐lasting DnaK induction in the wild‐type bacteria. In infection experiments performed with both mutants at the reduced temperature of 30°C, the dnaK mutant of B. suis survived but failed to multiply within U937 cells, whereas the wild‐type strain and the dnaJ mutant multiplied normally. Complementation of the dnaK mutant with the cloned dnaK gene restored growth at 37°C, increased resistance to acid pH, and increased intracellular multiplication. This is the first report of the effects of dnaK inactivation in a pathogenic species, and of the temperature‐independent contribution of DnaK to intracellular multiplication of the pathogen B. suis.
Nature Cell Biology | 2009
Jean-Sébastien Annicotte; Emilie Blanchet; Carine Chavey; Irena Iankova; S. Costes; Said Assou; Jacques Teyssier; Stéphane Dalle; Claude Sardet; Lluis Fajas
CDK4–pRB–E2F1 cell-cycle regulators are robustly expressed in non-proliferating β cells, suggesting that besides the control of β-cell number the CDK4–pRB–E2F1 pathway has a role in β-cell function. We show here that E2F1 directly regulates expression of Kir6.2, which is a key component of the KATP channel involved in the regulation of glucose-induced insulin secretion. We demonstrate, through chromatin immunoprecipitation analysis from tissues, that Kir6.2 expression is regulated at the promoter level by the CDK4–pRB–E2F1 pathway. Consistently, inhibition of CDK4, or genetic inactivation of E2F1, results in decreased expression of Kir6.2, impaired insulin secretion and glucose intolerance in mice. Furthermore we show that rescue of Kir6.2 expression restores insulin secretion in E2f1−/− β cells. Finally, we demonstrate that CDK4 is activated by glucose through the insulin pathway, ultimately resulting in E2F1 activation and, consequently, increased expression of Kir6.2. In summary we provide evidence that the CDK4–pRB–E2F1 regulatory pathway is involved in glucose homeostasis, defining a new link between cell proliferation and metabolism.
Oncogene | 2005
Jean-Sébastien Annicotte; Carine Chavey; Nadège Servant; Jacques Teyssier; Aurélie Bardin; Anne Licznar; Eric Badia; Pascal Pujol; Françoise Vignon; Thierry Maudelonde; Gwendal Lazennec; Vincent Cavaillès; Lluis Fajas
Liver receptor homolog-1 (LRH-1) is a nuclear receptor previously known to have distinct functions during mouse development and essential roles in cholesterol homeostasis. Recently, a new role for LRH-1 has been discovered in tumor progression, giving LRH-1 potential transforming functions. In order to identify critical factors stimulating LRH-1 expression leading to deregulated cellular proliferation, we studied its expression and its regulation in several breast cancer cell lines. We observed that LRH-1 expression was increased in estrogen receptor (ER) α expressing cell lines, whereas weak-to-no expression was found in nonexpressing ERα cell lines. In MCF7, LRH-1 expression was highly induced after treatment with 17β-estradiol (E2). This transcriptional regulation was the result of a direct binding of the ER to the LRH-1 promoter, as demonstrated by gelshift and chromatin immunoprecipitation assays. Interestingly, siRNA-mediated inactivation of LRH-1 decreased the E2-dependent proliferation of MCF7 cells. Finally, LRH-1 protein expression was detected by immunohistochemistry in tumor cells of human mammary ductal carcinomas. Altogether, these data demonstrate that LRH-1 is transcriptionally regulated by the ER α and reinforce the hypothesis that LRH-1 could exert potential oncogenic effects during breast cancer formation.
Journal of Bacteriology | 2001
Euloge Ekaza; Jacques Teyssier; Safia Ouahrani-Bettache; Jean-Pierre Liautard; Stephan Köhler
Pathogens often encounter stressful conditions inside their hosts. In the attempt to characterize the stress response in Brucella suis, a gene highly homologous to Escherichia coli clpB was isolated from Brucella suis, and the deduced amino acid sequence showed features typical of the ClpB ATPase family of stress response proteins. Under high-temperature stress conditions, ClpB of B. suis was induced, and an isogenic B. suis clpB mutant showed increased sensitivity to high temperature, but also to ethanol stress and acid pH. The effects were reversible by complementation. Simultaneous inactivation of clpA and clpB resulted in a mutant that was sensitive to oxidative stress. In B. suis expressing gfp, ClpA but not ClpB participated in degradation of the green fluorescent protein at 42 degrees C. We concluded that ClpB was responsible for tolerance to several stresses and that the lethality caused by harsh environmental conditions may have similar molecular origins.
Microbiology | 2000
Euloge Ekaza; Laurence A. Guilloteau; Jacques Teyssier; Jean-Pierre Liautard; Stephan Köhler
The protein ClpA belongs to a diverse group of polypeptides named ClpATPases, which are highly conserved, and which include several molecular chaperones. In this study the gene encoding the 91 kDa protein b-ClpA of the facultative intracellular pathogen Brucella suis, which showed 70% identity to ClpA of Rhodobacter blasticus, was identified and sequenced. Following heterologous expression in Escherichia coli strains SG1126 (DeltaclpA) and SG1127 (Deltalon DeltaclpA), b-ClpA replaced the function of E. coli ClpA, participating in the degradation of abnormal proteins. A b-clpA null mutant of B. suis was constructed, and growth experiments at 37 and 42 degrees C showed reduced growth rates for the null mutant, especially at the elevated temperature. The mutant complemented by b-clpA and overexpressing the gene was even more impaired at 37 and 42 degrees C. In intracellular infection of human THP-1 or murine J774 macrophage-like cells, the clpA null mutant and, to a lesser extent, the strain of B. suis overexpressing b-clpA behaved similarly to the wild-type strain. In a murine model of infection, however, the absence of ClpA significantly increased persistence of B. suis. These results showed that in B. suis the highly conserved protein ClpA by itself was dispensable for intramacrophagic growth, but was involved in temperature-dependent growth regulation, and in bacterial clearance from infected BALB/c mice.
Infection and Immunity | 2002
Stephan Köhler; Euloge Ekaza; Jean-Yves Paquet; Karl Walravens; Jacques Teyssier; Jacques Godfroid; Jean-Pierre Liautard
ABSTRACT The heat shock protein DnaK is essential for intramacrophagic replication of Brucella suis. The replacement of the stress-inducible, native dnaK promoter of B. suis by the promoter of the constitutively expressed bla gene resulted in temperature-independent synthesis of DnaK. In contrast to a dnaK null mutant, this strain grew at 37°C, with a thermal cutoff at 39°C. However, the constitutive dnaK mutant, which showed high sensitivity to H2O2-mediated stress, failed to multiply in murine macrophage-like cells and was rapidly eliminated in a mouse model of infection, adding strong arguments to our hypothesis that stress-mediated and heat shock promoter-dependent induction of dnaK is a crucial event in the intracellular replication of B. suis.
Infection and Immunity | 1999
Stephan Köhler; Safia Ouahrani-Bettache; Marion Layssac; Jacques Teyssier; Jean-Pierre Liautard
Journal of Bacteriology | 1992
M. F. M. Cellier; Jacques Teyssier; M. Nicolas; Jean-Pierre Liautard; J. Marti; J. Sri Widada