Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques Vouillamoz is active.

Publication


Featured researches published by Jacques Vouillamoz.


International Journal of Antimicrobial Agents | 2010

In vitro prevention of the emergence of daptomycin resistance in Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin

José M. Entenza; Marlyse Giddey; Jacques Vouillamoz; Philippe Moreillon

Daptomycin is bactericidal against meticillin-resistant Staphylococcus aureus (MRSA), glycopeptide-intermediate-resistant S. aureus (GISA) and vancomycin-susceptible and -resistant enterococci. However, selection for daptomycin-resistant derivatives has occasionally been reported during therapy in humans. Here we evaluate whether selection for daptomycin-resistant S. aureus or enterococci could be prevented in vitro by combining daptomycin with amoxicillin/clavulanic acid, ampicillin, gentamicin or rifampicin. Six strains of S. aureus (four MRSA and two GISA) and four strains of enterococci (two Enterococcus faecalis and two Enterococcus faecium) were serially exposed in broth to two-fold stepwise increasing concentrations of daptomycin alone or in combination with a fixed concentration [0.25x minimum inhibitory concentration (MIC)] of either of the second agents. The daptomycin MIC was examined after each cycle. Exposure to daptomycin alone gradually selected for S. aureus and enterococci with an increased MIC. Gentamicin did not prevent the emergence of daptomycin-resistant bacteria. Rifampicin was also unable to prevent daptomycin resistance, although resistance was slightly delayed. In contrast, amoxicillin/clavulanic acid or ampicillin prevented or greatly delayed the selection of daptomycin-resistant mutants in S. aureus and enterococci, respectively. Addition of amoxicillin/clavulanic acid or ampicillin to daptomycin prevents, or greatly delays, daptomycin resistance in vitro. Future studies in animal models are needed to predict the utility of these combinations in humans.


Antimicrobial Agents and Chemotherapy | 2003

Fungicidal Synergism of Fluconazole and Cyclosporine in Candida albicans Is Not Dependent on Multidrug Efflux Transporters Encoded by the CDR1, CDR2, CaMDR1, and FLU1 Genes

Oscar Marchetti; Philippe Moreillon; José M. Entenza; Jacques Vouillamoz; Michel P. Glauser; Jacques Bille; Dominique Sanglard

ABSTRACT The combination of fluconazole (FLC) and cyclosporine (CY) is fungicidal in FLC-susceptible C. albicans (O. Marchetti, P. Moreillon, M. P. Glauser, J. Bille, and D. Sanglard, Antimicrob. Agents Chemother. 44:2373-2381, 2000). The mechanism of this synergism is unknown. CY has several cellular targets including multidrug efflux transporters. The hypothesis that CY might inhibit FLC efflux was investigated by comparing the effect of FLC-CY in FLC-susceptible parent CAF2-1 (FLC MIC, 0.25 mg/liter) and in FLC-hypersusceptible mutant DSY1024 (FLC MIC, 0.03 mg/liter), in which the CDR1, CDR2, CaMDR1, and FLU1 transporter genes have been selectively deleted. We postulated that a loss of the fungicidal effect of FLC-CY in DSY1024 would confirm the roles of these efflux pumps. Time-kill curve studies showed a more potent fungistatic effect of FLC (P = 0.05 at 48 h with an inoculum of 103 CFU/ml) and a more rapid fungicidal effect of FLC-CY (P = 0.05 at 24 h with an inoculum of 103 CFU/ml) in the FLC-hypersusceptible mutant compared to those in the parent. Rats with experimental endocarditis were treated for 2 or 5 days with high-dose FLC, high-dose CY, or both drugs combined. FLC monotherapy for 5 days was more effective against the hypersusceptible mutant than against the parent. However, the addition of CY to FLC still conferred a therapeutic advantage in animals infected with mutant DSY1024, as indicated by better survival (P = 0.04 versus the results obtained with FLC) and sterilization of valves and kidneys after a very short (2-day) treatment (P = 0.009 and 0.002, respectively, versus the results obtained with FLC). Both in vitro and in vivo experiments consistently showed that the deletion of the four membrane transporters in DSY1024 did not result in loss of the fungicidal effect of FLC-CY. Yet, the accelerated killing in the mutant suggested a “dual-hit” mechanism involving FLC hypersusceptibility due to the efflux pump elimination and fungicidal activity conferred by CY. Thus, inhibition of multidrug efflux transporters encoded by CDR1, CDR2, CaMDR1, and FLU1 genes is not responsible for the fungicidal synergism of FLC-CY. Other cellular targets must be considered.


Antimicrobial Agents and Chemotherapy | 2001

Efficacies of Moxifloxacin, Ciprofloxacin, and Vancomycin against Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus Expressing Various Degrees of Ciprofloxacin Resistance

J. M. Entenza; Y. A. Que; Jacques Vouillamoz; M. P. Glauser; Philippe Moreillon

ABSTRACT The new 8-methoxyquinolone moxifloxacin was tested against two ciprofloxacin-susceptible Staphylococcus aureus strains (strains P8 and COL) and two ciprofloxacin-resistant derivatives of strain P8 carrying a single grlA mutation (strain P8-4) and double grlA and gyrA mutations (strain P8-128). All strains were resistant to methicillin. The MICs of ciprofloxacin and moxifloxacin were 0.5 and 0.125 mg/liter, respectively, for P8; 0.25 and 0.125 mg/liter, respectively, for COL; 8 and 0.25 mg/liter, respectively, for P8-4; and ≥128 and 2 mg/liter, respectively, for P8-128. In vitro, the rate of spontaneous resistance of P8 and COL was 10−7 on agar plates containing ciprofloxacin at two times the MIC, whereas it was ≤10−10on agar plates containing moxifloxacin at two times the MIC. Rats with experimental aortic endocarditis were treated with doses of drugs that simulate the kinetics in humans: moxifloxacin, 400 mg orally once a day; ciprofloxacin, 750 mg orally twice a day; or vancomycin, 1 g intravenously twice a day. Treatment was started either 12 or 24 h after infection and lasted for 3 days. Moxifloxacin treatment resulted in culture-negative vegetations in a total of 20 of 21 (95%) rats infected with P8, 10 of 11 (91%) rats infected with COL, and 19 of 24 (79%) rats infected with P8-4 (P < 0.05 compared to the results for the controls). In contrast, ciprofloxacin treatment sterilized zero of nine (0%) vegetations infected with first-level resistant mutant P8-4. Vancomycin sterilized only 8 of 15 (53%), 6 of 11 (54%), and 12 of 23 (52%) of the vegetations, respectively. No moxifloxacin-resistant derivative emerged among these organisms. However, moxifloxacin treatment of highly ciprofloxacin-resistant mutant P8-128 failed and selected for variants for which the MIC increased two times in 2 of 10 animals. Thus, while oral moxifloxacin might deserve consideration as treatment for staphylococcal infections in humans, caution related to its use against strains for which MICs are borderline is warranted.


Antimicrobial Agents and Chemotherapy | 2000

Quinupristin-Dalfopristin Combined with β-Lactams for Treatment of Experimental Endocarditis Due to Staphylococcus aureus Constitutively Resistant to Macrolide-Lincosamide-Streptogramin B Antibiotics

Jacques Vouillamoz; J. M. Entenza; C. Féger; M. P. Glauser; Philippe Moreillon

ABSTRACT Quinupristin-dalfopristin (Q-D) is an injectable streptogramin active against most gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). In experimental endocarditis, however, Q-D was less efficacious against MRSA isolates constitutively resistant to macrolide-lincosamide-streptogram B (C-MLSB) than against MLSB-susceptible isolates. To circumvent this problem, we used the checkerboard method to screen drug combinations that would increase the efficacy of Q-D against such bacteria. β-Lactams consistently exhibited additive or synergistic activity with Q-D. Glycopeptides, quinolones, and aminoglycosides were indifferent. No drugs were antagonistic. The positive Q-D–β-lactam interaction was independent of MLSB or β-lactam resistance. Moreover, addition of Q-D at one-fourth the MIC to flucloxacillin-containing plates decreased the flucloxacillin MIC for MRSA from 500 to 1,000 mg/liter to 30 to 60 mg/liter. Yet, Q-D–β-lactam combinations were not synergistic in bactericidal tests. Rats with aortic vegetations were infected with two C-MLSB-resistant MRSA isolates (isolates AW7 and P8) and were treated for 3 or 5 days with drug dosages simulating the following treatments in humans: (i) Q-D at 7 mg/kg two times a day (b.i.d.) (a relatively low dosage purposely used to help detect positive drug interactions), (ii) cefamandole at constant levels in serum of 30 mg/liter, (iii) cefepime at 2 g b.i.d., (iv) Q-D combined with either cefamandole or cefepime. Any of the drugs used alone resulted in treatment failure. In contrast, Q-D plus either cefamandole or cefepime significantly decreased valve infection compared to the levels of infection for both untreated controls and those that received monotherapy (P < 0.05). Importantly, Q-D prevented the growth of highly β-lactam-resistant MRSA in vivo. The mechanism of this beneficial drug interaction is unknown. However, Q-D–β-lactam combinations might be useful for the treatment of complicated infections caused by multiple organisms, including MRSA.


Antimicrobial Agents and Chemotherapy | 1999

Efficacy of Trovafloxacin in Treatment of Experimental Staphylococcal or Streptococcal Endocarditis

J. M. Entenza; Jacques Vouillamoz; M. P. Glauser; Philippe Moreillon

To determine the efficacy and safety of single-dose oral ciprofloxacin prophylaxis for the prevention of post-operative bacteriuria following transurethral resection of the prostate or bladder tumour, a prospective, randomized, double-blind, placebo-controlled trial was conducted. Five hundred and eighteen patients were randomized in a 2:2:1 ratio to receive ciprofloxacin 500 mg, cefotaxime 1 g or placebo 30-90 min before surgery. Of the 368 efficacy-evaluable patients, five (3.3%) ciprofloxacin, seven (4.8%) cefotaxime and five (7.0%) placebo recipients had post-operative bacteriuria (> or = 10(4) cfu/mL) during post-operative days 2-15. Five (3.4%) ciprofloxacin, five (3.4%) cefotaxime and one (2.4%) placebo recipients were considered clinical failures, of whom one, two and one patients, respectively, had concomitant bacteriuria. Drug-related adverse events were reported in six of 204 (3%) ciprofloxacin, 12 of 197 (6%) cefotaxime and one of 101 (1%) placebo patients. The observed rates of post-operative bacteriuria suggest that a single 500 mg dose of ciprofloxacin is suitable prophylaxis for transurethral surgery.


Infection and Immunity | 2011

Induction of Experimental Endocarditis by Continuous Low-Grade Bacteremia Mimicking Spontaneous Bacteremia in Humans

Tiago Rafael Veloso; M. Amiguet; Valentin Rousson; Marlyse Giddey; Jacques Vouillamoz; Philippe Moreillon; J. M. Entenza

ABSTRACT Transient high-grade bacteremia following invasive procedures carries a risk of infective endocarditis (IE). This is supported by experimental endocarditis. On the other hand, case-control studies showed that IE could be caused by cumulative exposure to low-grade bacteremia occurring during daily activities. However, no experimental demonstration of this latter possibility exists. This study investigated the infectivity in animals of continuous low-grade bacteremia compared to that of brief high-grade bacteremia. Rats with aortic vegetations were inoculated with Streptococcus intermedius, Streptococcus gordonii or Staphylococcus aureus (strains Newman and P8). Animals were challenged with 103 to 106 CFU. Identical bacterial numbers were given by bolus (1 ml in 1 min) or continuous infusion (0.0017 ml/min over 10 h). Bacteremia was 50 to 1,000 times greater after bolus than during continuous inoculation. Streptococcal bolus inoculation of 105 CFU infected 63 to 100% vegetations compared to 30 to 71% infection after continuous infusion (P > 0.05). When increasing the inoculum to 106 CFU, bolus inoculation infected 100% vegetations and continuous infusion 70 to 100% (P > 0.05). S. aureus bolus injection of 103 CFU infected 46 to 57% valves. This was similar to the 53 to 57% infection rates produced by continuous infusion (P > 0.05). Inoculation of 104 CFU of S. aureus infected 80 to 100% vegetations after bolus and 60 to 75% after continuous infusion (P > 0.05). These results show that high-level bacteremia is not required to induce experimental endocarditis and support the hypothesis that cumulative exposure to low-grade bacteremia represents a genuine risk of IE in humans.


Infection and Immunity | 2013

Use of a Human-Like Low-Grade Bacteremia Model of Experimental Endocarditis To Study the Role of Staphylococcus aureus Adhesins and Platelet Aggregation in Early Endocarditis

Tiago Rafael Veloso; Aziz Chaouch; Thierry Roger; Marlyse Giddey; Jacques Vouillamoz; Paul Majcherczyk; Yok-Ai Que; Valentin Rousson; Philippe Moreillon; José M. Entenza

ABSTRACT Animal models of infective endocarditis (IE) induced by high-grade bacteremia revealed the pathogenic roles of Staphylococcus aureus surface adhesins and platelet aggregation in the infection process. In humans, however, S. aureus IE possibly occurs through repeated bouts of low-grade bacteremia from a colonized site or intravenous device. Here we used a rat model of IE induced by continuous low-grade bacteremia to explore further the contributions of S. aureus virulence factors to the initiation of IE. Rats with aortic vegetations were inoculated by continuous intravenous infusion (0.0017 ml/min over 10 h) with 106 CFU of Lactococcus lactis pIL253 or a recombinant L. lactis strain expressing an individual S. aureus surface protein (ClfA, FnbpA, BCD, or SdrE) conferring a particular adhesive or platelet aggregation property. Vegetation infection was assessed 24 h later. Plasma was collected at 0, 2, and 6 h postinoculation to quantify the expression of tumor necrosis factor (TNF), interleukin 1α (IL-1α), IL-1β, IL-6, and IL-10. The percentage of vegetation infection relative to that with strain pIL253 (11%) increased when binding to fibrinogen was conferred on L. lactis (ClfA strain) (52%; P = 0.007) and increased further with adhesion to fibronectin (FnbpA strain) (75%; P < 0.001). Expression of fibronectin binding alone was not sufficient to induce IE (BCD strain) (10% of infection). Platelet aggregation increased the risk of vegetation infection (SdrE strain) (30%). Conferring adhesion to fibrinogen and fibronectin favored IL-1β and IL-6 production. Our results, with a model of IE induced by low-grade bacteremia, resembling human disease, extend the essential role of fibrinogen binding in the initiation of S. aureus IE. Triggering of platelet aggregation or an inflammatory response may contribute to or promote the development of IE.


The Journal of Infectious Diseases | 2015

Prophylaxis of Experimental Endocarditis with Antiplatelet and Antithrombin Agents: a Role for Long-term Prevention of Infective Endocarditis in Humans?

Tiago Rafael Veloso; Yok-Ai Que; Aziz Chaouch; Marlyse Giddey; Jacques Vouillamoz; Valentin Rousson; Philippe Moreillon; José M. Entenza

BACKGROUND Infective endocarditis (IE) mostly occurs after spontaneous low-grade bacteremia. Thus, IE cannot be prevented by circumstantial antibiotic prophylaxis. Platelet activation following bacterial-fibrinogen interaction or thrombin-mediated fibrinogen-fibrin polymerization is a critical step in vegetation formation. We tested the efficacy of antiplatelet and antithrombin to prevent experimental IE. METHODS A rat model of experimental IE following prolonged low-grade bacteremia mimicking smoldering bacteremia in humans was used. Prophylaxis with antiplatelets (aspirin, ticlopidine [alone or in combination], eptifibatide, or abciximab) or anticoagulants (antithrombin dabigatran etexilate or anti-vitamin K acenocoumarol) was started 2 days before inoculation with Streptococcus gordonii or Staphylococcus aureus. Valve infection was assessed 24 hours later. RESULTS Aspirin plus ticlopidine, as well as abciximab, protected 45%-88% of animals against S. gordonii and S. aureus IE (P < .05). Dabigatran etexilate protected 75% of rats against IE due to S. aureus (P < .005) but failed to protect against S. gordonii (<30% protection). Acenocoumarol was ineffective. CONCLUSIONS Antiplatelet and direct antithrombin agents may be useful in the prophylaxis of IE in humans. In particular, the potential dual benefit of dabigatran etexilate might be reconsidered for patients with prosthetic valves, who require life-long anticoagulation and in whom S. aureus IE is associated with high mortality.


International Journal of Medical Microbiology | 2013

Streptococcus tigurinus is highly virulent in a rat model of experimental endocarditis.

Tiago Rafael Veloso; Andrea Zbinden; Federica Andreoni; Marlyse Giddey; Jacques Vouillamoz; Philippe Moreillon; Annelies S. Zinkernagel; José M. Entenza

Streptococcus tigurinus is responsible for systemic infections in humans including infective endocarditis. We investigated whether the invasive trait of S. tigurinus in humans correlated with an increased ability to induce IE in rats. Rats with catheter-induced aortic vegetations were inoculated with 10⁴ CFU/ml of either of four S. tigurinus strains AZ_3a(T), AZ_4a, AZ_8 and AZ_14, isolated from patients with infective endocarditis or with the well known IE pathogen Streptococcus gordonii (Challis). Aortic infection was assessed after 24 h. S. tigurinus AZ_3a(T), AZ_4a and AZ_14 produced endocarditis in ≥80% of rats whereas S. gordonii produced endocarditis in only 33% of animals (P<0.05). S. tigurinus AZ_8 caused vegetation infection in 56% of the animals. The capacity of S. tigurinus to induce aortic infection was not related to their ability to bind extracellular matrix proteins (fibrinogen, fibronectin or collagen) or to trigger platelet aggregation. However, all S. tigurinus isolates showed an enhanced resistance to phagocytosis by macrophages and two of them had an increased ability to enter endothelial cells, key attributes of invasive streptococcal species.


International Journal of Antimicrobial Agents | 2013

Bactericidal synergism between daptomycin and the phage lysin Cpl-1 in a mouse model of pneumococcal bacteraemia

Jacques Vouillamoz; José M. Entenza; Marlyse Giddey; Vincent A. Fischetti; Philippe Moreillon; Grégory Resch

Combination therapy may improve the outcome of Streptococcus pneumoniae-induced bacteraemia. Here we tested the combination of two antipneumococcal agents, daptomycin and Cpl-1 (the pneumococcal Cp-1 bacteriophage lysin), in a mouse model of pneumococcal bacteraemia. Mice were challenged intraperitoneally (i.p.) with 10(6)CFU of the extremely virulent serotype 2 S. pneumoniae D39 isolate. Subtherapeutic doses of daptomycin (0.4mg/kg) and Cpl-1 (0.4mg/kg and 1mg/kg) were administrated i.p. either alone or in combination by a single bolus injection 1h after bacterial challenge. Survival rates of animals were followed over a period of 7 days. Daptomycin (0.4mg/kg) in combination with Cpl-1 (0.4mg/kg) significantly increased the percentage of surviving mice at Day 7 (80%) compared with the untreated control (0%) and daptomycin or Cpl-1 monotherapy (35% and 0%, respectively). Whilst increasing the concentration of Cpl-1 to 1.0mg/kg did not improve survival when injected alone, its combination with 0.4mg/kg daptomycin further increased the survival rate to 95%. Thus, it was found that the combination of daptomycin with Cpl-1 was synergistic and bactericidal against S. pneumoniae in a mouse model of pneumococcal bacteraemia. To our knowledge, this is the first report of synergism between daptomycin and a phage lysin demonstrated in vivo. Such a combination could represent an interesting alternative therapy for the treatment of pneumococcal bacteraemia/sepsis and possibly other severe pneumococcal infections.

Collaboration


Dive into the Jacques Vouillamoz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge