Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacy R. Crosby is active.

Publication


Featured researches published by Jacy R. Crosby.


The New England Journal of Medicine | 2014

Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

Jacy R. Crosby; Gina M. Peloso; Paul L. Auer; David R. Crosslin; Nathan O. Stitziel; Leslie A. Lange; Yingchang Lu; Zheng-zheng Tang; He Zhang; George Hindy; Nicholas G. D. Masca; Kathleen Stirrups; Stavroula Kanoni; Ron Do; Goo Jun; Youna Hu; Hyun Min Kang; Chenyi Xue; Anuj Goel; Martin Farrall; Stefano Duga; Pier Angelica Merlini; Rosanna Asselta; Domenico Girelli; Nicola Martinelli; Wu Yin; Dermot F. Reilly; Elizabeth K. Speliotes; Caroline S. Fox; Kristian Hveem

BACKGROUND Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). CONCLUSIONS Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).


The New England Journal of Medicine | 2014

Inactivating mutations in NPC1L1 and protection from coronary heart disease

Nathan O. Stitziel; Hong-Hee Won; Alanna C. Morrison; Gina M. Peloso; Ron Do; Leslie A. Lange; Pierre Fontanillas; Namrata Gupta; Stefano Duga; Anuj Goel; Martin Farrall; Danish Saleheen; Paola G. Ferrario; Inke R. König; Rosanna Asselta; Piera Angelica Merlini; Nicola Marziliano; Maria Francesca Notarangelo; Ursula M. Schick; Paul L. Auer; Themistocles L. Assimes; Muredach P. Reilly; Robert L. Wilensky; Daniel J. Rader; G. Kees Hovingh; Thomas Meitinger; Thorsten Kessler; Adnan Kastrati; Karl-Ludwig Laugwitz; David S. Siscovick

BACKGROUND Ezetimibe lowers plasma levels of low-density lipoprotein (LDL) cholesterol by inhibiting the activity of the Niemann-Pick C1-like 1 (NPC1L1) protein. However, whether such inhibition reduces the risk of coronary heart disease is not known. Human mutations that inactivate a gene encoding a drug target can mimic the action of an inhibitory drug and thus can be used to infer potential effects of that drug. METHODS We sequenced the exons of NPC1L1 in 7364 patients with coronary heart disease and in 14,728 controls without such disease who were of European, African, or South Asian ancestry. We identified carriers of inactivating mutations (nonsense, splice-site, or frameshift mutations). In addition, we genotyped a specific inactivating mutation (p.Arg406X) in 22,590 patients with coronary heart disease and in 68,412 controls. We tested the association between the presence of an inactivating mutation and both plasma lipid levels and the risk of coronary heart disease. RESULTS With sequencing, we identified 15 distinct NPC1L1 inactivating mutations; approximately 1 in every 650 persons was a heterozygous carrier for 1 of these mutations. Heterozygous carriers of NPC1L1 inactivating mutations had a mean LDL cholesterol level that was 12 mg per deciliter (0.31 mmol per liter) lower than that in noncarriers (P=0.04). Carrier status was associated with a relative reduction of 53% in the risk of coronary heart disease (odds ratio for carriers, 0.47; 95% confidence interval, 0.25 to 0.87; P=0.008). In total, only 11 of 29,954 patients with coronary heart disease had an inactivating mutation (carrier frequency, 0.04%) in contrast to 71 of 83,140 controls (carrier frequency, 0.09%). CONCLUSIONS Naturally occurring mutations that disrupt NPC1L1 function were found to be associated with reduced plasma LDL cholesterol levels and a reduced risk of coronary heart disease. (Funded by the National Institutes of Health and others.).


Nature Communications | 2010

Deep resequencing reveals excess rare recent variants consistent with explosive population growth

Alex Coventry; Lara M. Bull-Otterson; Xiaoming Liu; Andrew G. Clark; Taylor J. Maxwell; Jacy R. Crosby; James E. Hixson; Thomas J. Rea; Donna M. Muzny; Lora Lewis; David A. Wheeler; Aniko Sabo; Christine M. Lusk; Kenneth G. Weiss; Humeira Akbar; Andrew Cree; Alicia Hawes; Irene Newsham; Robin Varghese; Donna Villasana; Shannon Gross; Vandita Joshi; Jireh Santibanez; Margaret Morgan; Kyle Chang; Walker Hale; Alan R. Templeton; Eric Boerwinkle; Richard A. Gibbs; Charles F. Sing

Accurately determining the distribution of rare variants is an important goal of human genetics, but resequencing of a sample large enough for this purpose has been unfeasible until now. Here, we applied Sanger sequencing of genomic PCR amplicons to resequence the diabetes-associated genes KCNJ11 and HHEX in 13,715 people (10,422 European Americans and 3,293 African Americans) and validated amplicons potentially harbouring rare variants using 454 pyrosequencing. We observed far more variation (expected variant-site count ∼578) than would have been predicted on the basis of earlier surveys, which could only capture the distribution of common variants. By comparison with earlier estimates based on common variants, our model shows a clear genetic signal of accelerating population growth, suggesting that humanity harbours a myriad of rare, deleterious variants, and that disease risk and the burden of disease in contemporary populations may be heavily influenced by the distribution of rare variants.


Human Molecular Genetics | 2011

Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders

Christian P. Schaaf; Aniko Sabo; Yasunari Sakai; Jacy R. Crosby; Donna M. Muzny; Alicia Hawes; Lora Lewis; Humeira Akbar; Robin Varghese; Eric Boerwinkle; Richard A. Gibbs; Huda Y. Zoghbi

Autism spectrum disorders (ASDs) are a heterogeneous group of neuro-developmental disorders. While significant progress has been made in the identification of genes and copy number variants associated with syndromic autism, little is known to date about the etiology of idiopathic non-syndromic autism. Sanger sequencing of 21 known autism susceptibility genes in 339 individuals with high-functioning, idiopathic ASD revealed de novo mutations in at least one of these genes in 6 of 339 probands (1.8%). Additionally, multiple events of oligogenic heterozygosity were seen, affecting 23 of 339 probands (6.8%). Screening of a control population for novel coding variants in CACNA1C, CDKL5, HOXA1, SHANK3, TSC1, TSC2 and UBE3A by the same sequencing technology revealed that controls were carriers of oligogenic heterozygous events at significantly (P < 0.01) lower rate, suggesting oligogenic heterozygosity as a new potential mechanism in the pathogenesis of ASDs.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Small Dense Low-Density Lipoprotein-Cholesterol Concentrations Predict Risk for Coronary Heart Disease The Atherosclerosis Risk in Communities (ARIC) Study

Ron C. Hoogeveen; John W. Gaubatz; Wensheng Sun; Rhiannon Dodge; Jacy R. Crosby; Jennifer Jiang; David Couper; Salim S. Virani; Sekar Kathiresan; Eric Boerwinkle; Christie M. Ballantyne

Objective—To investigate the relationship between plasma levels of small dense low-density lipoprotein-cholesterol (sdLDL-C) and risk for incident coronary heart disease (CHD) in a prospective study among Atherosclerosis Risk in Communities (ARIC) study participants. Approach and Results—Plasma sdLDL-C was measured in 11 419 men and women of the biracial ARIC study using a newly developed homogeneous assay. A proportional hazards model was used to examine the relationship among sdLDL-C, vascular risk factors, and risk for CHD events (n=1158) for a period of ≈11 years. Plasma sdLDL-C levels were strongly correlated with an atherogenic lipid profile and were higher in patients with diabetes mellitus than non–diabetes mellitus (49.6 versus 42.3 mg/dL; P<0.0001). In a model that included established risk factors, sdLDL-C was associated with incident CHD with a hazard ratio of 1.51 (95% confidence interval, 1.21–1.88) for the highest versus the lowest quartile, respectively. Even in individuals considered to be at low cardiovascular risk based on their LDL-C levels, sdLDL-C predicted risk for incident CHD (hazard ratio, 1.61; 95% confidence interval, 1.04–2.49). Genome-wide association analyses identified genetic variants in 8 loci associated with sdLDL-C levels. These loci were in or close to genes previously associated with risk for CHD. We discovered 1 novel locus, PCSK7, for which genetic variation was significantly associated with sdLDL-C and other lipid factors. Conclusions—sdLDL-C was associated with incident CHD in ARIC study participants. The novel association of genetic variants in PCSK7 with sdLDL-C and other lipid traits may provide new insights into the role of this gene in lipid metabolism.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Small Dense Low-Density Lipoprotein-Cholesterol Concentrations Predict Risk for Coronary Heart Disease

Ron C. Hoogeveen; John W. Gaubatz; Wensheng Sun; Rhiannon Dodge; Jacy R. Crosby; Jennifer Jiang; David Couper; Salim S. Virani; Sekar Kathiresan; Eric Boerwinkle; Christie M. Ballantyne

Objective—To investigate the relationship between plasma levels of small dense low-density lipoprotein-cholesterol (sdLDL-C) and risk for incident coronary heart disease (CHD) in a prospective study among Atherosclerosis Risk in Communities (ARIC) study participants. Approach and Results—Plasma sdLDL-C was measured in 11 419 men and women of the biracial ARIC study using a newly developed homogeneous assay. A proportional hazards model was used to examine the relationship among sdLDL-C, vascular risk factors, and risk for CHD events (n=1158) for a period of ≈11 years. Plasma sdLDL-C levels were strongly correlated with an atherogenic lipid profile and were higher in patients with diabetes mellitus than non–diabetes mellitus (49.6 versus 42.3 mg/dL; P<0.0001). In a model that included established risk factors, sdLDL-C was associated with incident CHD with a hazard ratio of 1.51 (95% confidence interval, 1.21–1.88) for the highest versus the lowest quartile, respectively. Even in individuals considered to be at low cardiovascular risk based on their LDL-C levels, sdLDL-C predicted risk for incident CHD (hazard ratio, 1.61; 95% confidence interval, 1.04–2.49). Genome-wide association analyses identified genetic variants in 8 loci associated with sdLDL-C levels. These loci were in or close to genes previously associated with risk for CHD. We discovered 1 novel locus, PCSK7, for which genetic variation was significantly associated with sdLDL-C and other lipid factors. Conclusions—sdLDL-C was associated with incident CHD in ARIC study participants. The novel association of genetic variants in PCSK7 with sdLDL-C and other lipid traits may provide new insights into the role of this gene in lipid metabolism.


PLOS ONE | 2014

Whole Exome Sequencing Identifies Novel Genes for Fetal Hemoglobin Response to Hydroxyurea in Children with Sickle Cell Anemia

Vivien A. Sheehan; Jacy R. Crosby; Aniko Sabo; Nicole A. Mortier; Thad A. Howard; Donna M. Muzny; Shannon Dugan-Perez; Banu Aygun; Kerri Nottage; Eric Boerwinkle; Richard A. Gibbs; Russell E. Ware; Jonathan M. Flanagan

Hydroxyurea has proven efficacy in children and adults with sickle cell anemia (SCA), but with considerable inter-individual variability in the amount of fetal hemoglobin (HbF) produced. Sibling and twin studies indicate that some of that drug response variation is heritable. To test the hypothesis that genetic modifiers influence pharmacological induction of HbF, we investigated phenotype-genotype associations using whole exome sequencing of children with SCA treated prospectively with hydroxyurea to maximum tolerated dose (MTD). We analyzed 171 unrelated patients enrolled in two prospective clinical trials, all treated with dose escalation to MTD. We examined two MTD drug response phenotypes: HbF (final %HbF minus baseline %HbF), and final %HbF. Analyzing individual genetic variants, we identified multiple low frequency and common variants associated with HbF induction by hydroxyurea. A validation cohort of 130 pediatric sickle cell patients treated to MTD with hydroxyurea was genotyped for 13 non-synonymous variants with the strongest association with HbF response to hydroxyurea in the discovery cohort. A coding variant in Spalt-like transcription factor, or SALL2, was associated with higher final HbF in this second independent replication sample and SALL2 represents an outstanding novel candidate gene for further investigation. These findings may help focus future functional studies and provide new insights into the pharmacological HbF upregulation by hydroxyurea in patients with SCA.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Small Dense LDL Cholesterol Concentrations Predict Risk for Coronary Heart Disease: the Atherosclerosis Risk in Communities (ARIC) Study

Ron C. Hoogeveen; John W. Gaubatz; Wensheng Sun; Rhiannon Dodge; Jacy R. Crosby; Jennifer Jiang; David Couper; Salim S. Virani; Sekar Kathiresan; Eric Boerwinkle; Christie M. Ballantyne

Objective—To investigate the relationship between plasma levels of small dense low-density lipoprotein-cholesterol (sdLDL-C) and risk for incident coronary heart disease (CHD) in a prospective study among Atherosclerosis Risk in Communities (ARIC) study participants. Approach and Results—Plasma sdLDL-C was measured in 11 419 men and women of the biracial ARIC study using a newly developed homogeneous assay. A proportional hazards model was used to examine the relationship among sdLDL-C, vascular risk factors, and risk for CHD events (n=1158) for a period of ≈11 years. Plasma sdLDL-C levels were strongly correlated with an atherogenic lipid profile and were higher in patients with diabetes mellitus than non–diabetes mellitus (49.6 versus 42.3 mg/dL; P<0.0001). In a model that included established risk factors, sdLDL-C was associated with incident CHD with a hazard ratio of 1.51 (95% confidence interval, 1.21–1.88) for the highest versus the lowest quartile, respectively. Even in individuals considered to be at low cardiovascular risk based on their LDL-C levels, sdLDL-C predicted risk for incident CHD (hazard ratio, 1.61; 95% confidence interval, 1.04–2.49). Genome-wide association analyses identified genetic variants in 8 loci associated with sdLDL-C levels. These loci were in or close to genes previously associated with risk for CHD. We discovered 1 novel locus, PCSK7, for which genetic variation was significantly associated with sdLDL-C and other lipid factors. Conclusions—sdLDL-C was associated with incident CHD in ARIC study participants. The novel association of genetic variants in PCSK7 with sdLDL-C and other lipid traits may provide new insights into the role of this gene in lipid metabolism.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Small Dense Low-Density Lipoprotein-Cholesterol Concentrations Predict Risk for Coronary Heart DiseaseSignificance

Ron C. Hoogeveen; John W. Gaubatz; Wensheng Sun; Rhiannon Dodge; Jacy R. Crosby; Jennifer Jiang; David Couper; Salim S. Virani; Sekar Kathiresan; Eric Boerwinkle; Christie M. Ballantyne

Objective—To investigate the relationship between plasma levels of small dense low-density lipoprotein-cholesterol (sdLDL-C) and risk for incident coronary heart disease (CHD) in a prospective study among Atherosclerosis Risk in Communities (ARIC) study participants. Approach and Results—Plasma sdLDL-C was measured in 11 419 men and women of the biracial ARIC study using a newly developed homogeneous assay. A proportional hazards model was used to examine the relationship among sdLDL-C, vascular risk factors, and risk for CHD events (n=1158) for a period of ≈11 years. Plasma sdLDL-C levels were strongly correlated with an atherogenic lipid profile and were higher in patients with diabetes mellitus than non–diabetes mellitus (49.6 versus 42.3 mg/dL; P<0.0001). In a model that included established risk factors, sdLDL-C was associated with incident CHD with a hazard ratio of 1.51 (95% confidence interval, 1.21–1.88) for the highest versus the lowest quartile, respectively. Even in individuals considered to be at low cardiovascular risk based on their LDL-C levels, sdLDL-C predicted risk for incident CHD (hazard ratio, 1.61; 95% confidence interval, 1.04–2.49). Genome-wide association analyses identified genetic variants in 8 loci associated with sdLDL-C levels. These loci were in or close to genes previously associated with risk for CHD. We discovered 1 novel locus, PCSK7, for which genetic variation was significantly associated with sdLDL-C and other lipid factors. Conclusions—sdLDL-C was associated with incident CHD in ARIC study participants. The novel association of genetic variants in PCSK7 with sdLDL-C and other lipid traits may provide new insights into the role of this gene in lipid metabolism.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Small Dense Low-Density Lipoprotein-Cholesterol Concentrations Predict Risk for Coronary Heart DiseaseSignificance: The Atherosclerosis Risk in Communities (ARIC) Study

Ron C. Hoogeveen; John W. Gaubatz; Wensheng Sun; Rhiannon Dodge; Jacy R. Crosby; Jennifer Jiang; David Couper; Salim S. Virani; Sekar Kathiresan; Eric Boerwinkle; Christie M. Ballantyne

Objective—To investigate the relationship between plasma levels of small dense low-density lipoprotein-cholesterol (sdLDL-C) and risk for incident coronary heart disease (CHD) in a prospective study among Atherosclerosis Risk in Communities (ARIC) study participants. Approach and Results—Plasma sdLDL-C was measured in 11 419 men and women of the biracial ARIC study using a newly developed homogeneous assay. A proportional hazards model was used to examine the relationship among sdLDL-C, vascular risk factors, and risk for CHD events (n=1158) for a period of ≈11 years. Plasma sdLDL-C levels were strongly correlated with an atherogenic lipid profile and were higher in patients with diabetes mellitus than non–diabetes mellitus (49.6 versus 42.3 mg/dL; P<0.0001). In a model that included established risk factors, sdLDL-C was associated with incident CHD with a hazard ratio of 1.51 (95% confidence interval, 1.21–1.88) for the highest versus the lowest quartile, respectively. Even in individuals considered to be at low cardiovascular risk based on their LDL-C levels, sdLDL-C predicted risk for incident CHD (hazard ratio, 1.61; 95% confidence interval, 1.04–2.49). Genome-wide association analyses identified genetic variants in 8 loci associated with sdLDL-C levels. These loci were in or close to genes previously associated with risk for CHD. We discovered 1 novel locus, PCSK7, for which genetic variation was significantly associated with sdLDL-C and other lipid factors. Conclusions—sdLDL-C was associated with incident CHD in ARIC study participants. The novel association of genetic variants in PCSK7 with sdLDL-C and other lipid traits may provide new insights into the role of this gene in lipid metabolism.

Collaboration


Dive into the Jacy R. Crosby's collaboration.

Top Co-Authors

Avatar

Eric Boerwinkle

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Aniko Sabo

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Couper

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jennifer Jiang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

John W. Gaubatz

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rhiannon Dodge

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Richard A. Gibbs

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ron C. Hoogeveen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Salim S. Virani

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge