Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae Gyun Oh is active.

Publication


Featured researches published by Jae Gyun Oh.


Nature | 2011

SUMO1-dependent modulation of SERCA2a in heart failure

Changwon Kho; Ahyoung Lee; Dongtak Jeong; Jae Gyun Oh; Antoine H. Chaanine; Woo Jin Park; Roger J. Hajjar

The calcium-transporting ATPase ATP2A2, also known as SERCA2a, is a critical ATPase responsible for Ca2+ re-uptake during excitation–contraction coupling. Impaired Ca2+ uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. The small ubiquitin-related modifier (SUMO) can be conjugated to lysine residues of target proteins, and is involved in many cellular processes. Here we show that SERCA2a is SUMOylated at lysines 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. The levels of SUMO1 and the SUMOylation of SERCA2a itself were greatly reduced in failing hearts. SUMO1 restitution by adeno-associated-virus-mediated gene delivery maintained the protein abundance of SERCA2a and markedly improved cardiac function in mice with heart failure. This effect was comparable to SERCA2A gene delivery. Moreover, SUMO1 overexpression in isolated cardiomyocytes augmented contractility and accelerated Ca2+ decay. Transgene-mediated SUMO1 overexpression rescued cardiac dysfunction induced by pressure overload concomitantly with increased SERCA2a function. By contrast, downregulation of SUMO1 using small hairpin RNA (shRNA) accelerated pressure-overload-induced deterioration of cardiac function and was accompanied by decreased SERCA2a function. However, knockdown of SERCA2a resulted in severe contractile dysfunction both in vitro and in vivo, which was not rescued by overexpression of SUMO1. Taken together, our data show that SUMOylation is a critical post-translational modification that regulates SERCA2a function, and provide a platform for the design of novel therapeutic strategies for heart failure.


Circulation Research | 2006

PICOT Inhibits Cardiac Hypertrophy and Enhances Ventricular Function and Cardiomyocyte Contractility

Dongtak Jeong; Hyeseon Cha; Eun Young Kim; Misuk Kang; Dong Kwon Yang; Ji Myoung Kim; Pyoung Oh Yoon; Jae Gyun Oh; Oliver Y. Bernecker; Susumu Sakata; Le Thi Thu; Lei Cui; Young-Hoon Lee; Do Han Kim; Sun-Hee Woo; Ronglih Liao; Roger J. Hajjar; Woo Jin Park

Multiple signaling pathways involving protein kinase C (PKC) have been implicated in the development of cardiac hypertrophy. We observed that a putative PKC inhibitor, PICOT (PKC-Interacting Cousin Of Thioredoxin) was upregulated in response to hypertrophic stimuli both in vitro and in vivo. This suggested that PICOT may act as an endogenous negative feedback regulator of cardiac hypertrophy through its ability to inhibit PKC activity, which is elevated during cardiac hypertrophy. Adenovirus-mediated gene transfer of PICOT completely blocked the hypertrophic response of neonatal rat cardiomyocytes to enthothelin-1 and phenylephrine, as demonstrated by cell size, sarcomere rearrangement, atrial natriuretic factor expression, and rates of protein synthesis. Transgenic mice with cardiac-specific overexpression of PICOT showed that PICOT is a potent inhibitor of cardiac hypertrophy induced by pressure overload. In addition, PICOT overexpression dramatically increased the ventricular function and cardiomyocyte contractility as measured by ejection fraction and end-systolic pressure of transgenic hearts and peak shortening of isolated cardiomyocytes, respectively. Intracellular Ca2+ handing analysis revealed that increases in myofilament Ca2+ responsiveness, together with increased rate of sarcoplasmic reticulum Ca2+ reuptake, are associated with the enhanced contractility in PICOT-overexpressing cardiomyocytes. The inhibition of cardiac remodeling by of PICOT with a concomitant increase in ventricular function and cardiomyocyte contractility suggests that PICOT may provide an efficient modality for treatment of cardiac hypertrophy and heart failure.


Circulation Research | 2008

PICOT Attenuates Cardiac Hypertrophy by Disrupting Calcineurin–NFAT Signaling

Dongtak Jeong; Ji Myoung Kim; Hyeseon Cha; Jae Gyun Oh; Jaeho Park; Soo-Hyeon Yun; Eun-Seon Ju; Eun-Seok Jeon; Roger J. Hajjar; Woo Jin Park

PICOT (protein kinase C–interacting cousin of thioredoxin) was previously shown to inhibit pressure overload-induced cardiac hypertrophy, concomitant with an increase in ventricular function and cardiomyocyte contractility. The combined analyses of glutathione S-transferase pull-down experiments and mass spectrometry enabled us to determine that PICOT directly interacts with muscle LIM protein (MLP) via its carboxyl-terminal half (PICOT-C). It was also shown that PICOT colocalizes with MLP in the Z-disc. MLP is known to play a role in anchoring calcineurin to the Z-disc in the sarcomere, which is critical for calcineurin–NFAT (nuclear factor of activated T cells) signaling. We, therefore, suggested that PICOT may affect calcineurin–NFAT signaling through its interaction with MLP. Consistent with this hypothesis, PICOT, or more specifically PICOT-C, abrogated phenylephrine-induced increases in calcineurin phosphatase activity, NFAT dephosphorylation/nuclear translocation, and NFAT-dependent transcriptional activation in neonatal cardiomyocytes. In addition, pressure overload–induced upregulation of NFAT target genes was significantly diminished in the hearts of PICOT-overexpressing transgenic mice. PICOT interfered with MLP–calcineurin interactions in a dose-dependent manner. Moreover, calcineurin was displaced from the Z-disc, concomitant with an abrogated interaction between calcineurin and MLP, in the hearts of PICOT transgenic mice. Replenishment of MLP restored the hypertrophic responses and the increase in calcineurin phosphatase activity that was inhibited by PICOT in phenylephrine-treated cardiomyocytes. Finally, PICOT-C inhibited cardiac hypertrophy to an extent that was comparable to that of full-length PICOT. Taken together, these data suggest that PICOT inhibits cardiac hypertrophy largely by negatively regulating calcineurin–NFAT signaling via disruption of the MLP–calcineurin interaction.


Journal of Molecular and Cellular Cardiology | 2008

PICOT is a critical regulator of cardiac hypertrophy and cardiomyocyte contractility

Hyeseon Cha; Ji Myoung Kim; Jae Gyun Oh; Moon Hee Jeong; Chang Sik Park; Jaeho Park; Hyeon Joo Jeong; Byung Keon Park; Young-Hoon Lee; Dongtak Jeong; Dong Kwon Yang; Oliver Y. Bernecker; Do Han Kim; Roger J. Hajjar; Woo Jin Park

PICOT (PKC-interacting cousin of thioredoxin) was previously shown to inhibit the development of cardiac hypertrophy, concomitant with an increase in cardiomyocyte contractility. To explore the physiological function of PICOT in the hearts, we generated a PICOT-deficient mouse line by using a gene trap approach. PICOT(-/-) mice were embryonic lethal indicating that PICOT plays an essential role during embryogenesis, whereas PICOT(+/-) mice were viable with no apparent morphological defects. The PICOT protein levels were reduced by about 50% in the hearts of PICOT(+/-) mice. Significantly exacerbated cardiac hypertrophy was induced by pressure overload in PICOT(+/-) mice relative to that seen in wild type littermates. In line with this observation, calcineurin-NFAT signaling was greatly enhanced by pressure overload in the hearts of PICOT(+/-) mice. Cardiomyocytes from PICOT(+/-) mice exhibited significantly reduced contractility, which may be due in part to hypophosphorylation of phospholamban and reduced SERCA activity. These data indicate that the precise PICOT protein level significantly affects the process of cardiac hypertrophy and cardiomyocyte contractility. We suggest that PICOT plays as a critical negative regulator of cardiac hypertrophy and a positive inotropic regulator.


Nature Communications | 2015

Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure

Changwon Kho; Ahyoung Lee; Dongtak Jeong; Jae Gyun Oh; Przemek A. Gorski; Kenneth Fish; Roberto Sanchez; Robert J. DeVita; Geir Christensen; Russell Dahl; Roger J. Hajjar

Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), a critical pump regulating calcium cycling in cardiomyocyte, are hallmarks of heart failure. We have previously described a role for the small ubiquitin-like modifier type 1 (SUMO-1) as a regulator of SERCA2a and have shown that gene transfer of SUMO-1 in rodents and large animal models of heart failure restores cardiac function. Here, we identify and characterize a small molecule, N106, which increases SUMOylation of SERCA2a. This compound directly activates the SUMO-activating enzyme, E1 ligase, and triggers intrinsic SUMOylation of SERCA2a. We identify a pocket on SUMO E1 likely to be responsible for N106s effect. N106 treatment increases contractile properties of cultured rat cardiomyocytes and significantly improves ventricular function in mice with heart failure. This first-in-class small-molecule activator targeting SERCA2a SUMOylation may serve as a potential therapeutic strategy for treatment of heart failure.


Cardiovascular Research | 2012

Receptor activator of nuclear factor-κB ligand is a novel inducer of myocardial inflammation

Sangmi Ock; Jihyun Ahn; Seok Hong Lee; Hongryeol Park; Jang Won Son; Jae Gyun Oh; Dong Kwon Yang; Wang Soo Lee; Ho Shik Kim; Jaerang Rho; Goo Taeg Oh; Evan Dale Abel; Woo Jin Park; Jeong Ki Min; Jaetaek Kim

AIMS Although increased levels of myocardial receptor activator of nuclear factor (NF)-κB ligand (RANKL) have been reported in heart failure, the role of this pathway in mediating activation of inflammatory pathways during myocardial remodelling is less well understood. This study sought to determine the role of myocardial RANKL in regulating cytokine expression. METHODS AND RESULTS A marked increase in RANKL expression occurred as early as 6h following transverse aortic constriction (TAC) in mouse hearts and persisted at 3 and 17 days. An increase in tumour necrosis factor-α (TNF-α), interleukin (IL)-1α, and IL-1β was observed in the hypertrophied hearts only at 3 or 17 days after TAC. Treatment with losartan significantly attenuated TAC-induced cardiac hypertrophy, in parallel with decreased expression of RANKL, TNF-α, IL-1α, and IL-1β. Furthermore, injection of a RANKL-neutralizing monoclonal antibody attenuated RANKL-induced cytokine expression. RANKL stimulated expression of TNF-α, IL-1α, and IL-1β in neonatal rat cardiomyocytes via activation of NF-κB. RANKL-induced NF-κB activation and expression of these cytokines were both attenuated when RANK, receptor for RANKL, or TRAF2 or TRAF6, adaptors for RANK, was silenced by siRNA. Furthermore, inhibitors of phospholipase C (PLC), protein kinase C (PKC), and inhibitor of κB kinase also significantly inhibited RANKL-induced cellular activities, but inhibitors of phosphatidylinositol 3-kinase, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase were without effect. CONCLUSION Our data demonstrate for the first time that the pressure-overloaded myocardium generates RANKL, which induces TNF-α, IL-1α, and IL-1β production via a RANK-TRAF2/TRAF6-PLC-PKC-NF-κB-mediated autocrine mechanism.


Experimental and Molecular Medicine | 2010

Parathyroid hormone accelerates decompensation following left ventricular hypertrophy.

Hyeseon Cha; Hyeon Joo Jeong; Seung Pil Jang; Joo Yeon Kim; Dong Kwon Yang; Jae Gyun Oh; Woo Jin Park

Parathyroid hormone (PTH) treatment was previously shown to improve cardiac function after myocardial infarction by enhancing neovascularization and cell survival. In this study, pressure overload-induced left ventricular hypertrophy (LVH) was induced in mice by transverse aortic banding (TAB) for 2 weeks. We subsequently evaluated the effects of a 2-week treatment with PTH or saline on compensated LVH. After another 4 weeks, the hearts of the mice were analyzed by echocardiography, histology, and molecular biology. Echocardiography showed that hearts of the PTH-treated mice have more severe failing phenotypes than the saline-treated mice following TAB with a greater reduction in fractional shortening and left ventricular posterior wall thickness and with a greater increase in left ventricular internal dimension. Increases in the heart weight to body weight ratio and lung weight to body weight ratio following TAB were significantly exacerbated in PTH-treated mice compared to saline-treated mice. Molecular markers for heart failure, fibrosis, and angiogenesis were also altered in accordance with more severe heart failure in the PTH-treated mice compared to the saline-treated mice following TAB. In addition, the PTH-treated hearts were manifested with increased fibrosis accompanied by an enhanced SMAD2 phosphorylation. These data suggest that the PTH treatment may accelerate the process of decompensation of LV, leading to heart failure.


Circulation | 2016

Cardiac Stim1 Silencing Impairs Adaptive Hypertrophy and Promotes Heart Failure Through Inactivation of mTORC2/Akt Signaling

Ludovic Benard; Jae Gyun Oh; Marine Cacheux; Ahyoung Lee; Mathieu Nonnenmacher; Daniel S. Matasic; Erik Kohlbrenner; Changwon Kho; Catherine Pavoine; Roger J. Hajjar; Jean-Sébastien Hulot

Background— Stromal interaction molecule 1 (STIM1) is a dynamic calcium signal transducer implicated in hypertrophic growth of cardiomyocytes. STIM1 is thought to act as an initiator of cardiac hypertrophic response at the level of the sarcolemma, but the pathways underpinning this effect have not been examined. Methods and Results— To determine the mechanistic role of STIM1 in cardiac hypertrophy and during the transition to heart failure, we manipulated STIM1 expression in mice cardiomyocytes by using in vivo gene delivery of specific short hairpin RNAs. In 3 different models, we found that Stim1 silencing prevents the development of pressure overload–induced hypertrophy but also reverses preestablished cardiac hypertrophy. Reduction in STIM1 expression promoted a rapid transition to heart failure. We further showed that Stim1 silencing resulted in enhanced activity of the antihypertrophic and proapoptotic GSK-3&bgr; molecule. Pharmacological inhibition of glycogen synthase kinase-3 was sufficient to reverse the cardiac phenotype observed after Stim1 silencing. At the level of ventricular myocytes, Stim1 silencing or inhibition abrogated the capacity for phosphorylation of AktS473, a hydrophobic motif of Akt that is directly phosphorylated by mTOR complex 2. We found that Stim1 silencing directly impaired mTOR complex 2 kinase activity, which was supported by a direct interaction between STIM1 and Rictor, a specific component of mTOR complex 2. Conclusions— These data support a model whereby STIM1 is critical to deactivate a key negative regulator of cardiac hypertrophy. In cardiomyocytes, STIM1 acts by tuning Akt kinase activity through activation of mTOR complex 2, which further results in repression of GSK-3&bgr; activity.


Journal of Molecular and Cellular Cardiology | 2012

PICOT increases cardiac contractility by inhibiting PKCζ activity

Jae Gyun Oh; Dongtak Jeong; Hyeseon Cha; Ji Myoung Kim; Ekaterina Lifirsu; Jihwa Kim; Dong Kwon Yang; Chang Sik Park; Changwon Kho; Soonyong Park; Yung Joon Yoo; Do Han Kim; Jaetaek Kim; Roger J. Hajjar; Woo Jin Park

Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT) has distinct anti-hypertrophic and inotropic functions. We have previously shown that PICOT exerts its anti-hypertrophic effect by inhibiting calcineurin-NFAT signaling through its C-terminal glutaredoxin domain. However, the mechanism underlying the inotropic effect of PICOT is unknown. The results of protein pull-down experiments showed that PICOT directly binds to the catalytic domain of PKCζ through its N-terminal thioredoxin-like domain. Purified PICOT protein inhibited the kinase activity of PKCζ in vitro, which indicated that PICOT is an endogenous inhibitor of PKCζ. The inhibition of PKCζ activity with a PKCζ-specific pseudosubstrate peptide inhibitor was sufficient to increase the cardiac contractility in vitro and ex vivo. Overexpression of PICOT or inhibition of PKCζ activity down-regulated PKCα activity, which led to the elevation of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a activity, concomitant with the increased phosphorylation of phospholamban (PLB). Overexpression of PICOT or inhibition of PKCζ activity also down-regulated protein phosphatase (PP) 2A activity, which subsequently resulted in the increased phosphorylation of troponin (Tn) I and T, key myofilament proteins associated with the regulation of contractility. PICOT appeared to inhibit PP2A activity through the disruption of the functional PKCζ/PP2A complex. In contrast to the overexpression of PICOT or inhibition of PKCζ, reduced PICOT expression resulted in up-regulation of PKCα and PP2A activities, followed by decreased phosphorylation of PLB, and TnI and T, respectively, supporting the physiological relevance of these events. Transgene- or adeno-associated virus (AAV)-mediated overexpression of PICOT restored the impaired contractility and prevented further morphological and functional deterioration of the failing hearts. Taken together, the results of the present study suggest that PICOT exerts its inotropic effect by negatively regulating PKCα and PP2A activities through the inhibition of PKCζ activity. This finding provides a novel insight into the regulation of cardiac contractility.


Antioxidants & Redox Signaling | 2014

The Role of SUMO-1 in Cardiac Oxidative Stress and Hypertrophy

Ahyoung Lee; Dongtak Jeong; Shinichi Mitsuyama; Jae Gyun Oh; Lifan Liang; Yoshiyuki Ikeda; Junichi Sadoshima; Roger J. Hajjar; Changwon Kho

AIMS Small ubiquitin-like modifier type 1 (SUMO-1) has been shown to play a critical role in the dysfunction of the cardiac isoform of sarcoplasmic reticulum calcium ATPase (SERCA2a) pump in the setting of heart failure. In cardiac hypertrophy, the role of SUMO-1 has not been defined and our studys goals were to examine the effects of modulating SUMO-1 on the hypertrophic response both in vitro and in vivo and to examine whether oxidative stress (during cardiac hypertrophy) is abrogated by SUMO-1 gene transfer. RESULTS In mice undergoing transverse aortic constriction (TAC), SUMO-1 levels increased slightly during the compensated stage of hypertrophy and then dropped sharply during the transition to heart failure. In isolated cardiomyocytes, SUMO-1 gene transfer inhibited the hypertrophic response in the presence of phenylephrine. Adeno-associated vector type 9 (AAV9) gene transfer of SUMO-1 prevented the heart from undergoing hypertrophy after TAC and prevented the development of left ventricular dysfunction. Furthermore, SUMO-1 gene transfer blocked the negative effects of H2O2 on SERCA2a activity in cardiac myocytes, while in vivo indices of oxidative stress were decreased by SUMO-1 in cardiac hypertrophy and heart failure. INNOVATION AND CONCLUSION The results of this study indicate that post-translational modifications of SERCA2a caused by the toxic environment of the hypertrophied and failing myocardium can be prevented by SUMO-1. Antioxid. Redox Signal. 21, 1986-2001.

Collaboration


Dive into the Jae Gyun Oh's collaboration.

Top Co-Authors

Avatar

Roger J. Hajjar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dongtak Jeong

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Woo Jin Park

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Changwon Kho

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ahyoung Lee

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dong Kwon Yang

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Erik Kohlbrenner

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Hyeseon Cha

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Matasic

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lifan Liang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge