Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae H.T. Lee is active.

Publication


Featured researches published by Jae H.T. Lee.


Journal of Neurotrauma | 2013

A Novel Porcine Model of Traumatic Thoracic Spinal Cord Injury

Jae H.T. Lee; Claire F. Jones; Elena B. Okon; Lisa M. Anderson; Seth Tigchelaar; Paul Kooner; Tamara Godbey; Bev Chua; Gordon Gray; Rhonda Hildebrandt; Peter A. Cripton; Wolfram Tetzlaff; Brian K. Kwon

Spinal cord injury (SCI) researchers have predominately utilized rodents and mice for in vivo SCI modeling and experimentation. From these small animal models have come many insights into the biology of SCI, and a growing number of novel treatments that promote behavioral recovery. It has, however, been difficult to demonstrate the efficacy of such treatments in human clinical trials. A large animal SCI model that is an intermediary between rodent and human SCI may be a valuable translational research resource for pre-clinically evaluating novel therapies, prior to embarking upon lengthy and expensive clinical trials. Here, we describe the development of such a large animal model. A thoracic spinal cord injury at T10/11 was induced in Yucatan miniature pigs (20-25 kg) using a weight drop device. Varying degrees of injury severity were induced by altering the height of the weight drop (5, 10, 20, 30, 40, and 50 cm). Behavioral recovery over 12 weeks was measured using a newly developed Porcine Thoracic Injury Behavior Scale (PTIBS). This scale distinguished locomotor recovery among animals of different injury severities, with strong intra-observer and inter-observer reliability. Histological analysis of the spinal cords 12 weeks post-injury revealed that animals with the more biomechanically severe injuries had less spared white matter and gray matter and less neurofilament immunoreactivity. Additionally, the PTIBS scores correlated strongly with the extent of tissue sparing through the epicenter of injury. This large animal model of SCI may represent a useful intermediary in the testing of novel pharmacological treatments and cell transplantation strategies.


PLOS ONE | 2011

Biomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats

Joanna M. Lubieniecka; Femke Streijger; Jae H.T. Lee; Nikolay Stoynov; Jie Liu; Randy Mottus; Tom A. Pfeifer; Brian K. Kwon; Jens R. Coorssen; Leonard J. Foster; Thomas A. Grigliatti; Wolfram Tetzlaff

One of the major challenges in management of spinal cord injury (SCI) is that the assessment of injury severity is often imprecise. Identification of reliable, easily quantifiable biomarkers that delineate the severity of the initial injury and that have prognostic value for the degree of functional recovery would significantly aid the clinician in the choice of potential treatments. To find such biomarkers we performed quantitative liquid chromatography-mass spectrometry (LC-MS/MS) analyses of cerebrospinal fluid (CSF) collected from rats 24 h after either a moderate or severe SCI. We identified a panel of 42 putative biomarkers of SCI, 10 of which represent potential biomarkers of SCI severity. Three of the candidate biomarkers, Ywhaz, Itih4, and Gpx3 were also validated by Western blot in a biological replicate of the injury. The putative biomarkers identified in this study may potentially be a valuable tool in the assessment of the extent of spinal cord damage.


Journal of Neurotrauma | 2011

Intermittent Fasting Improves Functional Recovery after Rat Thoracic Contusion Spinal Cord Injury

Mi-ae Jeong; Ward T. Plunet; Femke Streijger; Jae H.T. Lee; Jason R. Plemel; Sophia Park; Clarrie K. Lam; Jie Liu; Wolfram Tetzlaff

Spinal cord injury (SCI) often results in a loss of motor and sensory function. Currently there are no validated effective clinical treatments. Previously we found in rats that dietary restriction, in the form of every-other-day fasting (EODF), started prior to (pre-EODF), or after (post-EODF) an incomplete cervical SCI was neuroprotective, increased plasticity, and promoted motor recovery. Here we examined if EODF initiated prior to, or after, a T10 thoracic contusion injury would similarly lead to enhanced functional recovery compared to ad libitum feeding. Additionally, we tested if a group fed every day (pair-fed), but with the same degree of restriction as the EODF animals (∼25% calorie restricted), would also promote functional recovery, to examine if EODFs effect is due to overall calorie restriction, or is specific to alternating sequences of 24-h fasts and ad libitum eating periods. Behaviorally, both pre- and post-EODF groups exhibited better functional recovery in the regularity indexed BBB ambulatory assessment, along with several parameters of their walking pattern measured with the CatWalk device, compared to both the ad-libitium-fed group as well as the pair-fed group. Several histological parameters (intensity and symmetry of serotonin immunostaining caudal to the injury and gray matter sparing) correlated with functional outcome; however, no group differences were observed. Thus besides the beneficial effects of EODF after a partial cervical SCI, we now report that alternating periods of fasting (but not pair-fed) also promotes improved hindlimb locomotion after thoracic spinal cord contusion, demonstrating its robust effect in two different injury models.


Experimental Neurology | 2010

Lack of neuroprotective effects of simvastatin and minocycline in a model of cervical spinal cord injury

Jae H.T. Lee; Seth Tigchelaar; Jie Liu; Anthea Tench Stammers; Femke Streijger; Wolfram Tetzlaff; Brian K. Kwon

Minocycline, a commonly prescribed tetracycline antibiotic, has shown promise as a potential therapeutic agent in animal models of numerous neurologic disorders such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinsons disease, Huntingtons disease, stroke, and spinal cord injury (SCI). Simvastatin is one of many hydroxymethylglutaryl-coenzyme-A reductase inhibitors prescribed to lower cholesterol. These drugs are also known to reduce inflammation and oxidative stress, improve endothelial function, and modulate the immune system in stroke, traumatic brain injury, and SCI. As both drugs have translational potential, we evaluated their neuroprotective properties here in a clinically relevant model of contusive cervical spinal cord injury. Sprague-Dawley rats underwent a unilateral cervical contusion SCI at C5 and were randomized to receive: 1. Minocycline 90 mg/kg x 3 days, 2. Simvastatin 20 mg/kg x 7 days, 3. Simvastatin 20 mg/kg x 7 days then 5mg/kg x 35 days, or 4. Saline (Control). Behavioral recovery was assessed over 6 weeks using the horizontal ladder test, cylinder rearing test, modified Montoya staircase test and grooming test. Forepaw sensitivity was also assessed using the electronic von Frey Aesthesiometer. The corticospinal and rubrospinal tracts were traced and the spinal cords were harvested 7 weeks after injury. The extent of gray matter and white matter sparing and corticospinal and rubrospinal tract sprouting were evaluated in cross sections of the spinal cord. In the end, neither minocycline nor simvastatin treatment was associated with improved performance on the behavioral tests, as compared to saline controls. Performance on the horizontal ladder test, cylinder rearing test, and von Frey sensory test were similar among all groups. Animals treated for 42 days with simvastatin scored significantly higher in the grooming score compared to other groups, but retrieved significantly fewer pellets on the modified Montoya staircase test than control and minocycline treated animals. Histologically, there were no significant differences in white and gray matter sparing and in the extent of corticospinal and rubrospinal sprouting between the four groups. In conclusion, both minocycline and simvastatin failed to improve functional and histological recovery in our model of contusive cervical spinal cord injury.


PLOS ONE | 2013

Ketogenic Diet Improves Forelimb Motor Function after Spinal Cord Injury in Rodents

Femke Streijger; Ward T. Plunet; Jae H.T. Lee; Jie Liu; Clarrie K. Lam; Soeyun Park; Brett J. Hilton; Bas L. Fransen; Keely A. J. Matheson; Peggy Assinck; Brian K. Kwon; Wolfram Tetzlaff

High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited.


Experimental Neurology | 2010

Lack of robust neurologic benefits with simvastatin or atorvastatin treatment after acute thoracic spinal cord contusion injury

Cody Mann; Jae H.T. Lee; Jessica Hillyer; Anthea Tench Stammers; Wolfram Tetzlaff; Brian K. Kwon

Although much progress has been made in the clinical care of patients with acute spinal cord injuries, there are no reliably effective treatments, which minimize secondary damage and improve neurologic outcome. The time and expense needed to establish de novo pharmacologic or biologic therapies for acute SCI has encouraged the development of neuroprotective treatments based on drugs that are already in clinical use and, therefore, have the advantage of a well-characterized safety and pharmacokinetic profile in humans. Statins are the most commonly prescribed class of lipid-lowering drugs, and recently, it has been recognized that statins also have powerful immunomodulatory and anti-inflammatory effects. This paper describes a series of experiments that were performed to evaluate the comparative neuroprotective effects of simvastatin and atorvastatin. We observed a promising signal of neurologic benefit with simvastatin in our first experiment, but in repeated attempts to replicate that effect in three subsequent experiments, we failed to reveal any behavioral or histologic improvements. We would conclude that simvastatin given orally or subcutaneously at doses previously reported by other investigators to be effective in different neurologic conditions does not confer a significant neurologic benefit in a thoracic contusion injury model (OSU Impactor) when administered with a 1-h delay in intervention. We contend that further preclinical investigation of atorvastatin and simvastatin is warranted before considering their translation into human SCI.


Experimental Neurology | 2008

Delayed treatment of spinal cord injury with erythropoietin or darbepoetin--a lack of neuroprotective efficacy in a contusion model of cord injury.

Cody Mann; Jae H.T. Lee; Jie Liu; Anthea Tench Stammers; Hong-Moon Sohn; Wolfram Tetzlaff; Brian K. Kwon

A number of drugs commonly used for a variety of clinical indications have been found recently to have substantial neuroprotective properties, raising the potential for rapid translation into human clinical trials of spinal cord injury (SCI). In this study we compared the neuroprotective efficacy of erythropoietin and a derivative of it, darbepoetin, in an acute model of thoracic SCI. Sprague-Dawley rats were randomized to receive erythropoietin (5000 IU/kg), darbepoetin (10 mug/kg), or saline, as a single intravenous injection 1 h after a thoracic contusion SCI. The animals were evaluated for behavioral recovery over 6 weeks, which included BBB locomotor testing, horizontal ladder testing, video-analysis of gait, and hindlimb monofilament sensory testing. At 6 week post-injury, the spinal cords were evaluated histologically to measure white and grey matter sparing at and around the epicenter of injury. We found that neither erythropoietin nor darbepoetin led to improved behavioral recovery over saline controls, with no significant differences observed in BBB scores, BBB subscores, footfall errors on horizontal ladder testing, width of hindlimb base of support, or threshold for paw withdrawal on sensory testing. Furthermore, no differences were observed in grey or white matter sparing between the three experimental groups. Using doses of erythropoietin and darbepoetin that other investigators have reported to be beneficial in SCI and stroke models, we were unable to demonstrate a neuroprotective effect when administered 1 h after injury. Further preclinical investigation is necessary to refine the treatment strategy of using erythropoietin or darbepoetin in acute spinal cord injury.


Spine | 2010

Magnesium in a polyethylene glycol formulation provides neuroprotection after unilateral cervical spinal cord injury.

Jae H.T. Lee; Josee Roy; Hong Moon Sohn; Mi Ae Cheong; Jie Liu; Anthea Tench Stammers; Wolfram Tetzlaff; Brian K. Kwon

Study Design. Experimental animal study. Objective. To investigate the neuroprotective efficacy of this magnesium in polyethylene glycol (PEG) formulation in a contusive model of cervical spinal cord injury (SCI). Summary of Background Data. Intravenously administered magnesium has been extensively investigated as a neuroprotective agent in animal models of SCI, stroke, and traumatic brain injuries, and has been evaluated in large scale clinical trials for the latter 2 indications. We have developed a novel formulation of magnesium chloride (MgCl2) within PEG, and have previously demonstrated the neuroprotective benefit of this formulation in animal models of thoracic SCI. Methods. Twenty-two Sprague Dawley rats underwent a unilateral cervical hemicontusion at C4–C5 and were randomized 2 hours later to either the MgCl2 in PEG formulation, or normal saline. Each treatment was administered in 5 intravenous infusions spaced 6 hours apart. Behavioral recovery was assessed over 6 weeks, after which the cord was analyzed to measure the extent of gray matter and white matter sparing through the injury site. Results. In the horizontal ladder test, the percentage of forelimb errors made by the animals treated with MgCl2 in PEG formulation was significantly lower than the saline-treated controls. Histologic analysis also revealed a significantly higher cumulative white matter sparing through the injury site in the MgCl2 in PEG group. Conclusion. MgCl2 in a PEG formulation reduced secondary damage and improved behavioral recovery when administered 2 hours after a unilateral cervical hemicontusion injury. These findings are consistent with the neurologic benefit observed when administering this magnesium formulation in contusive and compressive models of thoracic SCI. Demonstrating the robustness of this neuroprotective effect in multiple injury models (and in the cervical injury model in particular) is important when considering the applicability of such a therapy for human SCIs.


Spine | 2012

The pressure distribution of cerebrospinal fluid responds to residual compression and decompression in an animal model of acute spinal cord injury.

Claire F. Jones; Robyn S. Newell; Jae H.T. Lee; Peter A. Cripton; Brian K. Kwon

Study Design. In vivo large animal (pig) model study of cerebrospinal fluid (CSF) pressures after acute experimental spinal cord injury (SCI). Objective. To determine how the CSF pressure (CSFP) and CSF pulse pressure amplitude (CSFPPA) cranial and caudal to the injury site change after an acute SCI with subsequent thecal occlusion and decompression. Summary of Background Data. Lowering intrathecal pressure via CSF drainage is currently instituted to prevent ischemia-induced SCI during thoracoabdominal aortic aneurysm surgery and was recently investigated as a potential intervention for acute traumatic SCI. However, in SCI patients, persistent extradural compression commonly occludes the subarachnoid space. This may generate a CSFP differential across the injury site, which cannot be appreciated with lumbar catheter pressure measurements. Methods. Anesthetized pigs were subjected to an acute contusive SCI at T11 and 8 hours of sustained compression (n = 12), or sham surgery (n = 2). CSFP was measured cranial and caudal to the injury site, using miniature pressure transducers, during compression and for 6 hours after decompression. Results. The cranial-caudal CSFP differential increased (mean, 0.39 mm Hg/h), predominantly due to increased cranial pressure. On decompression, cranial CSFP decreased (mean, –1.16 mm Hg) and caudal CSFP increased (mean, 0.65 mm Hg). The CSFP differential did not change significantly after decompression. Cranial CSFPPA was greater than caudal CSFPPA, but this differential did not change during compression. On decompression, the caudal CSFPPA increased in some but not all animals. Conclusion. Although extradural compression exists at the site of injury, lumbar CSFP may not accurately indicate CSFP cranial to the injury. Decompression may provide immediate, though perhaps partial, resolution of the pressure differential. CSFPPA was not a consistent indicator of decompression in this animal model. These findings may have implications for the design of future clinical protocols in which CSFP is monitored after acute SCI.


Journal of Neurotrauma | 2013

Characterization of a cervical spinal cord hemicontusion injury in mice using the infinite horizon impactor.

Femke Streijger; Tim M.J. Beernink; Jae H.T. Lee; Tim Bhatnagar; Soeyun Park; Brian K. Kwon; Wolfram Tetzlaff

The majority of clinical spinal cord injuries (SCIs) are contusive and occur at the cervical level of the spinal cord. Most scientists and clinicians agree that the preclinical evaluation of novel candidate treatments should include testing in a cervical SCI contusion model. Because mice are increasingly used because of the availability of genetically engineered lines, we characterized a novel cervical hemicontusion injury in mice using the Infinite Horizon Spinal Cord Impactor (Precisions Systems & Instrumentation, Lexington, KY). In the current study, C57BL/6 mice received a hemicontusion injury of 75 kilodynes with or without dwell time in an attempt to elicit a sustained moderate-to-severe motor deficit. Hemicontusion injuries without dwell time resulted in sustained deficits of the affected forepaw, as revealed by a 3-fold decrease in usage during rearing, a ∼50% reduction in grooming scores, and retrieval of significantly fewer pellets on the Montoya staircase test. Only minor transient deficits were observed in grasping force. CatWalk analysis revealed reduced paw-print size and swing speed of the affected forelimb. Added dwell time of 15 or 30 sec significantly worsened behavioral outcome, and mice demonstrated minimal ability of grasping, paw usage, and overground locomotion. Besides worsening of behavioral deficits, added dwell time also reduced residual white and gray matter at the epicenter and rostral-caudal to the injury, including on the contralateral side of the spinal cord. Taken together, we developed and characterized a new hemicontusion SCI model in mice that produces sufficient and sustained impairments in gross and skilled forelimb function and produced primarily unilateral functional deficits.

Collaboration


Dive into the Jae H.T. Lee's collaboration.

Top Co-Authors

Avatar

Brian K. Kwon

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Femke Streijger

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Liu

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Peter A. Cripton

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Elena B. Okon

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ward T. Plunet

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Clarrie K. Lam

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Seth Tigchelaar

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge