Jae-Han Jeon
Kyungpook National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jae-Han Jeon.
Diabetes Research and Clinical Practice | 2010
Jung-eun Lee; Yeon-Kyung Choi; Hyun-Ae Seo; Jae-Han Jeon; Ji-Yun Jeong; Seong-Su Moon; Jung-Guk Kim; Bo-Wan Kim; Su-Won Kim; Min Yoo; Joon-Young Kim; Inkyu Lee
AIMSnWe investigated whether gene polymorphisms of Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and matrix metalloproteinase 3 (MMP3) are associated with increased vascular calcification in patients with type 2 diabetes (T2D) and evaluated whether serum MMP3 and osteoprotegerin (OPG) levels are related to calcification.nnnMETHODSnThis study included 464 subjects: 269 patients with T2D and 195 healthy controls in South Korea. We genotyped subjects for four single nucleotide polymorphisms (SNPs): ENPP1 K121Q, ENPP1 A/G+1044TGA, MMP3 -709A>G and MMP3 -1475G>A. The presence or absence of calcifications in the aortic arch was assessed by plain chest radiography.nnnRESULTSnThe SNPs ENPP1 K121Q and MMP3 -709A>G showed significant associations with T2D (P=0.001 and P=0.004). The SNP ENPP1 K121Q showed a significant association with aortic arch calcification in T2D (P=0.036). Serum OPG levels were significantly higher in T2D patients than in the control group (P<0.001). However, serum MMP3 levels were significantly lower in T2D patients than in the control group (P<0.001).nnnCONCLUSIONSnOur study demonstrates that the ENPP1 K121Q and MMP3 -709A>G polymorphisms are associated with T2D, and that the ENPP1 Q allele is associated with increased aortic arch calcification in a Korean population.
PLOS ONE | 2016
Yu-Mi Lee; Se-A Kim; In-Kyu Lee; Jung-Guk Kim; Keun-Gyu Park; Ji-Yun Jeong; Jae-Han Jeon; Ji-Yeon Shin; Duk-Hee Lee
Objective Several intervention studies have suggested that vegetarian or vegan diets have clinical benefits, particularly in terms of glycemic control, in patients with type 2 diabetes (T2D); however, no randomized controlled trial has been conducted in Asians who more commonly depend on plant-based foods, as compared to Western populations. Here, we aimed to compare the effect of a vegan diet and conventional diabetic diet on glycemic control among Korean individuals. Materials and Methods Participants diagnosed with T2D were randomly assigned to follow either a vegan diet (excluding animal-based food including fish; n = 46) or a conventional diet recommended by the Korean Diabetes Association 2011 (n = 47) for 12 weeks. HbA1c levels were measured at weeks 0, 4, and 12, and the primary study endpoint was the change in HbA1c levels over 12 weeks. Results The mean HbA1c levels at weeks 0, 4, and 12 were 7.7%, 7.2%, and 7.1% in the vegan group, and 7.4%, 7.2%, and 7.2% in the conventional group, respectively. Although both groups showed significant reductions in HbA1C levels, the reductions were larger in the vegan group than in the conventional group (-0.5% vs. -0.2%; p-for-interaction = 0.017). When only considering participants with high compliance, the difference in HbA1c level reduction between the groups was found to be larger (-0.9% vs. -0.3%). The beneficial effect of vegan diets was noted even after adjusting for changes in total energy intake or waist circumference over the 12 weeks. Conclusion Both diets led to reductions in HbA1c levels; however, glycemic control was better with the vegan diet than with the conventional diet. Thus, the dietary guidelines for patients with T2D should include a vegan diet for the better management and treatment. However, further studies are needed to evaluate the long-term effects of a vegan diet, and to identify potential explanations of the underlying mechanisms. Trial Registration CRiS KCT0001771
Endocrinology | 2014
Ae-Kyung Min; Kwi-Hyun Bae; Yun-A Jung; Yeon-Kyung Choi; Mi-Jin Kim; Ji-Hyun Kim; Jae-Han Jeon; Jung-Guk Kim; In-Kyu Lee; Keun-Gyu Park
The fasting-induced hepatic hormone, fibroblast growth factor 21 (FGF21), is a potential candidate for the treatment of metabolic syndromes. Although peroxisome proliferator-activated receptor (PPAR)α is known to play a major role in the induction of hepatic FGF21 expression, other fasting-induced transcription factors that induce FGF21 expression have not yet been fully studied. In the present study, we investigated whether the fasting-induced activation of the orphan nuclear receptor Nur77 increases hepatic FGF21 expression. We found that fasting induced hepatic Nur77 and FGF21 expression. Glucagon and forskolin increased Nur77 and FGF21 expression in vivo and in vitro, respectively, and adenovirus-mediated overexpression of Nur77 (Ad-Nur77) increased FGF21 expression in vitro and in vivo. Moreover, knockdown of endogenous Nur77 expression by siRNA-Nur77 abolished the effect of forskolin on FGF21 expression. The results of ChIP assays, EMSA, and mutagenesis analysis showed that Nur77 bound to the putative NBRE of the FGF21 promoter in cultured hepatocytes and fasting induced Nur77 binding to the FGF21 promoter in vivo. Knockdown of PPARα partially inhibited forskolin-induced FGF21 expression, suggesting PPARα involvement in glucagon-stimulated FGF21 expression. In addition, double knockdown of PPARα and Nur77 further diminished FGF21 expression in cultured hepatocytes. In conclusion, this study shows that Nur77 mediates fasting-induced hepatic FGF21 expression, and suggests an alternative mechanism via which hepatic FGF21 transcription is mediated under fasting conditions.
Endocrine | 2015
Sung-Woo Kim; Jae-Han Jeon; Yeon-Kyung Choi; Won-Kee Lee; In-Ryang Hwang; Jung-Guk Kim; In-Kyu Lee; Keun-Gyu Park
Accumulating evidence shows that high sodium chloride intake increases urinary calcium excretion and may be a risk factor for osteoporosis. However, the effect of oral sodium chloride intake on bone mineral density (BMD) and risk of osteoporosis has been inadequately researched. The aim of the present study was to determine whether urinary sodium excretion (reflecting oral sodium chloride intake) associates with BMD and prevalence of osteoporosis in postmenopausal women. This cross-sectional study involved a nationally representative sample consisting of 2,779 postmenopausal women who participated in the Korea National Health and Nutritional Examination Surveys in 2008–2011. The association of urinary sodium/creatinine ratio with BMD and other osteoporosis risk factors was assessed. In addition, the prevalence of osteoporosis was assessed in four groups with different urinary sodium/creatinine ratios. Participants with osteoporosis had significantly higher urinary sodium/creatinine ratios than the participants without osteoporosis. After adjusting for multiple confounding factors, urinary sodium/creatinine ratio correlated inversely with lumbar spine BMD (Pxa0=xa00.001). Similarly, when participants were divided into quartile groups according to urinary sodium/creatinine ratio, the average BMD dropped as the urinary sodium/creatinine ratio increased. Multiple logistic regression analysis revealed that compared to quartile 1, quartile 4 had a significantly increased prevalence of lumbar spine osteoporosis (odds ratios 1.346, P for trendxa0=xa00.044). High urinary sodium excretion was significantly associated with low BMD and high prevalence of osteoporosis in lumbar spine. These results suggest that high sodium chloride intake decreases lumbar spine BMD and increases the risk of osteoporosis in postmenopausal women.
Biochemical and Biophysical Research Communications | 2014
Hye-Young Seo; Byoung Kuk Jang; Yun-A Jung; Eun-Ju Lee; Heung Sik Kim; Jae-Han Jeon; Jung Guk Kim; In-Ae Lee; Mi Kyung Kim; Keun Gyu Park
Hepatic stellate cells (HSCs) are major players in liver fibrogenesis. Accumulating evidence shows that suppression of autophagy plays an important role in the development and progression of liver disease. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA) and choline, was recently shown to modulate autophagy. However, little is known about the effects of PLD1 on the production of type I collagen that characterizes liver fibrosis. Here, we examined whether PLD1 regulates type I collagen levels in HSCs through induction of autophagy. Adenovirus-mediated overexpression of PLD-1 (Ad-PLD1) reduced type I collagen levels in the activated human HSC lines, hTERT and LX2. Overexpression of PLD1 in HSCs led to induction of autophagy as demonstrated by increased LC3-II conversion and formation of LC3 puncta, and decreased p62 abundance. Moreover, inhibiting the induction of autophagy by treating cells with bafilomycin or a small interfering (si)RNA for ATG7 rescued Ad-PLD1-induced suppression of type I collagen accumulation in HSCs. The effects of PLD on type I collagen levels were not related to TGF-β/Smad signaling. Furthermore, treatment of cells with PA induced autophagy and inhibited type I collagen accumulation. The present study indicates that PLD1 plays a role in regulating type I collagen accumulation through induction of autophagy.
Liver International | 2015
Gwon-Soo Jung; Jae-Han Jeon; Yeon-Kyung Choi; Se Young Jang; Soo Young Park; Mi-Kyung Kim; Eui-Cheol Shin; Won-Il Jeong; In-Kyu Lee; Yu Na Kang; Keun-Gyu Park
An atypical orphan nuclear receptor small heterodimer partner (SHP) is known to be regulated by AMP‐activated protein kinase (AMPK). Both of them inhibit TGF‐β and Smad signalling and exhibit antifibrotic activity in the liver. However, little is known about the protective effects of SHP and AMPK against hepatitis c virus (HCV)‐induced hepatic fibrosis.
PLOS ONE | 2014
Gwon Soo Jung; Jae-Han Jeon; Yun-A Jung; Yeon-Kyung Choi; Hye-Soon Kim; Jung-Guk Kim; Keun Gyu Park; Mi-Kyung Kim; In-Kyu Lee
The blockade of angiotensin II (Ang II) is a major therapeutic strategy for diabetic nephropathy. The main roles of Ang II in renal disease are mediated via the Ang type 1 receptor (AT1R). Upregulation of clusterin/apolipoprotein J has been reported in nephropathy models, suggesting it has a protective role in nephropathogenesis. Here, we studied how clusterin acts against Ang II-induced renal fibrosis. Levels of AT1R and fibrotic markers in clusterin-/- mice and Ang II infused rats transfected with an adenovirus encoding clusterin were evaluated by immunoblot analysis, real time RT-PCR, and immunohistochemical staining. The effect of clusterin on renal fibrosis was evaluated in NRK-52E cells, a cultured renal tubular epithelial cell line, using immunoblot analysis and real time RT-PCR. Nuclear localization of NF-κB was evaluated using immunofluorecence and co-immunoprecipitation. Renal fibrosis and expression of AT1R was higher in the kidneys of clusterin-/- mice than in those of wild-type mice. Furthermore, loss of clusterin accelerated Ang II-stimulated renal fibrosis and AT1R expression. Overexpression of clusterin in proximal tubular epithelial cells decreased the levels of Ang II-stimulated fibrotic markers and AT1R. Moreover, intrarenal delivery of clusterin attenuated Ang II-mediated expression of fibrotic markers and AT1R in rats. Fluorescence microscopy and co-immunoprecipitation in conjunction with western blot revealed that clusterin inhibited Ang II-stimulated nuclear localization of p-NF-κB via a direct physical interaction and subsequently decreased the AT1R level in proximal tubular epithelial cells. These data suggest that clusterin attenuates Ang II-induced renal fibrosis by inhibition of NF-κB activation and subsequent downregulation of AT1R. This study raises the possibility that clusterin could be used as a therapeutic target for Ang II-induced renal diseases.
Kidney International | 2016
Hye-Young Seo; Jae-Han Jeon; Yun-A Jung; Gwon-Soo Jung; Eun-Ju Lee; Young-Keun Choi; Keun-Gyu Park; Mi Sun Choe; Byoung Kuk Jang; Mi-Kyung Kim; In-Kyu Lee
The hallmark of renal tubulointerstitial fibrosis is the accumulation of myofibroblasts and extracellular matrix proteins. Fyn, a member of the Src family of kinases, has diverse biological functions including regulation of mitogenic signaling and proliferation and integrin-mediated interaction. Src family proteins promote pulmonary fibrosis by augmenting transforming growth factor-β signaling, but their role in renal fibrosis is less understood. We observed upregulation of Fyn in a renal fibrosis model induced by unilateral ureteral obstruction. Upon ureteral obstruction, Fyn-deficient mice exhibited attenuated renal fibrosis relative to wild-type mice. Furthermore, obstruction-induced renal expression of typexa0I collagen, fibronectin, α-smooth muscle actin, andxa0plasminogen activator inhibitor-1 was suppressed. Pharmacologic inhibition of Fyn blocked induction of extracellular matrix proteins in kidney cell lines. Importantly, the attenuation of renal fibrosis by Fyn deficiency was not accompanied by changes in the Smad pathway. Rather, the antifibrotic effect of Fyn deficiency was associated with downregulation of signal transducer and activator of transcription 3 (STAT3). Small, interfering RNA targeting STAT3 in Fyn-deficient cells further suppressed α-smooth muscle actin expression, whereas a STAT3 activator partially restored plasminogen activator inhibitor-1 expression, indicating that STAT3 signaling is critically involved in this process. Thus, Fyn plays an important role in renal fibrosis. Hence, Fyn kinase inhibitors may be therapeutically useful against renal fibrosis.
European Journal of Medicinal Chemistry | 2016
Jina Kim; Jungwook Chin; Chun Young Im; Eun Kyung Yoo; Seoyeon Woo; Hee Jong Hwang; Joong-heui Cho; Kyung-ah Seo; Jae-Young Song; Hayoung Hwang; Kyung-Hee Kim; Nam Doo Kim; Suk Kyoon Yoon; Jae-Han Jeon; Seung-Yun Yoon; Yong Hyun Jeon; Hueng-Sik Choi; In-Kyu Lee; Seong Heon Kim; Sung Jin Cho
Estrogen-related receptor gamma (ERRγ) has recently been recognized as an attractive target for treating inflammation, cancer, and metabolic disorders. Herein, we discovered and demonstrated the inxa0vitro pharmacology as well as the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of chemical entities that could act as highly selective inverse agonists for ERRγ. The results were comparable to those for GSK5182 (4), a leading ERRγ inverse agonist ligand. Briefly, the half-maximal inhibitory concentration (IC50) range of the synthesized compounds for ERRγ was 0.1-10xa0μM. Impressively, compound 24e exhibited potency comparable to 4 but was more selective for ERRγ over three other subtypes: ERRα, ERRβ, and estrogen receptor α. Furthermore, compound 24e exhibited a superior inxa0vitro ADMET profile compared to the other compounds. Thus, the newly synthesized class of ERRγ inverse agonists could be lead candidates for developing clinical therapies for ERRγ-related disorders.
Diabetes & Metabolism Journal | 2018
Sungmi Park; Jae-Han Jeon; Byong-Keol Min; Chae-Myeong Ha; Themis Thoudam; Bo-Yoon Park; In-Kyu Lee
Mitochondrial dysfunction is a hallmark of metabolic diseases such as obesity, type 2 diabetes mellitus, neurodegenerative diseases, and cancers. Dysfunction occurs in part because of altered regulation of the mitochondrial pyruvate dehydrogenase complex (PDC), which acts as a central metabolic node that mediates pyruvate oxidation after glycolysis and fuels the Krebs cycle to meet energy demands. Fine-tuning of PDC activity has been mainly attributed to post-translational modifications of its subunits, including the extensively studied phosphorylation and de-phosphorylation of the E1α subunit of pyruvate dehydrogenase (PDH), modulated by kinases (pyruvate dehydrogenase kinase [PDK] 1-4) and phosphatases (pyruvate dehydrogenase phosphatase [PDP] 1-2), respectively. In addition to phosphorylation, other covalent modifications, including acetylation and succinylation, and changes in metabolite levels via metabolic pathways linked to utilization of glucose, fatty acids, and amino acids, have been identified. In this review, we will summarize the roles of PDC in diverse tissues and how regulation of its activity is affected in various metabolic disorders.