Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae Han Kim is active.

Publication


Featured researches published by Jae Han Kim.


Applied Microbiology and Biotechnology | 2010

Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass

Jae Han Kim; David E. Block; David A. Mills

Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy.


PLOS ONE | 2011

Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

Daniel Garrido; Jae Han Kim; J. Bruce German; Helen E. Raybould; David A. Mills

Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.


PLOS ONE | 2013

Proteomic Analysis of Bifidobacterium longum subsp. infantis Reveals the Metabolic Insight on Consumption of Prebiotics and Host Glycans

Jae Han Kim; Hyun Joo An; Daniel Garrido; J. Bruce German; Carlito B. Lebrilla; David A. Mills

Bifidobacterium longum subsp. infantis is a common member of the intestinal microbiota in breast-fed infants and capable of metabolizing human milk oligosaccharides (HMO). To investigate the bacterial response to different prebiotics, we analyzed both cell wall associated and whole cell proteins in B. infantis. Proteins were identified by LC-MS/MS followed by comparative proteomics to deduce the protein localization within the cell. Enzymes involved in the metabolism of lactose, glucose, galactooligosaccharides, fructooligosaccharides and HMO were constitutively expressed exhibiting less than two-fold change regardless of the sugar used. In contrast, enzymes in N-Acetylglucosamine and sucrose catabolism were induced by HMO and fructans, respectively. Galactose-metabolizing enzymes phosphoglucomutase, UDP-glucose 4-epimerase and UTP glucose-1-P uridylytransferase were expressed constitutively, while galactokinase and galactose-1-phosphate uridylyltransferase, increased their expression three fold when HMO and lactose were used as substrates for cell growth. Cell wall-associated proteomics also revealed ATP-dependent sugar transport systems associated with consumption of different prebiotics. In addition, the expression of 16 glycosyl hydrolases revealed the complete metabolic route for each substrate. Mucin, which possesses O-glycans that are structurally similar to HMO did not induced the expression of transport proteins, hydrolysis or sugar metabolic pathway indicating B. infantis do not utilize these glycoconjugates.


Scientific Reports | 2016

Integrated GlycoProteome Analyzer (I-GPA) for Automated Identification and Quantitation of Site-Specific N-Glycosylation.

Gun Wook Park; Jin Young Kim; Heeyoun Hwang; Ju Yeon Lee; Young Hee Ahn; Hyun Kyoung Lee; Eun Sun Ji; Kwang Hoe Kim; Hoi Keun Jeong; Ki Na Yun; Yong Sam Kim; Jeong Heon Ko; Hyun Joo An; Jae Han Kim; Young-Ki Paik; Jong Shin Yoo

Human glycoproteins exhibit enormous heterogeneity at each N-glycosite, but few studies have attempted to globally characterize the site-specific structural features. We have developed Integrated GlycoProteome Analyzer (I-GPA) including mapping system for complex N-glycoproteomes, which combines methods for tandem mass spectrometry with a database search and algorithmic suite. Using an N-glycopeptide database that we constructed, we created novel scoring algorithms with decoy glycopeptides, where 95 N-glycopeptides from standard α1-acid glycoprotein were identified with 0% false positives, giving the same results as manual validation. Additionally automated label-free quantitation method was first developed that utilizes the combined intensity of top three isotope peaks at three highest MS spectral points. The efficiency of I-GPA was demonstrated by automatically identifying 619 site-specific N-glycopeptides with FDRu2009≤u20091%, and simultaneously quantifying 598 N-glycopeptides, from human plasma samples that are known to contain highly glycosylated proteins. Thus, I-GPA platform could make a major breakthrough in high-throughput mapping of complex N-glycoproteomes, which can be applied to biomarker discovery and ongoing global human proteome project.


Ocular Surface | 2012

Glycomic Analysis of Tear and Saliva in Ocular Rosacea Patients: The Search for a Biomarker

Ana Carolina Vieira; Hyun Joo An; Sureyya Ozcan; Jae Han Kim; Carlito B. Lebrilla; Mark J. Mannis

The purpose of this study was to study changes in glycosylation in tear and saliva obtained from control and ocular rosacea patients in order to identify potential biomarkers for rosacea. Tear fluid was collected from 51 subjects (28 healthy controls and 23 patients with ocular rosacea). Saliva was collected from 42 of the same subjects (25 controls and 17 patients). Pooled and individual samples were examined to determine overall glycan profiles and individual variations in glycosylation. O-and N- glycans were released from both patients and control subjects. Released glycans were purified and enriched by solid-phase extraction (SPE) with graphitized carbon. Glycans were eluted based on glycan size and polarity. SPE fractions were then analyzed by high-resolution mass spectrometry. Glycan compositions were assigned by accurate masses. Their structures were further elucidated by tandem mass spectrometric using collision-induced dissociation (CID), and specific linkage information was obtained by exoglycosidase digestion. N-xa0and O-glycans were released from 20-μL samples without protein identification, separation, and purification. Approximately 50 N-glycans and 70 O-glycans were globally profiled by mass spectrometry. Most N-glycans were highly fucosylated, while O-glycans were sulfated. Normal tear fluid and saliva contain highly fucosylated glycans. The numbers of sulfated glycans were dramatically increased in tear and saliva of rosacea patients compared to controls. Glycans found in tear and saliva from roseatic patients present highly quantitative similarity. The abundance of highly fucosylated N-glycans in the control samples and sulfated O-glycans in ocular rosacea patient samples may lead to the discovery of an objective diagnostic marker for the disease.


Journal of Proteome Research | 2014

Differentiation of Cancer Cell Origin and Molecular Subtype by Plasma Membrane N-Glycan Profiling

Serenus Hua; Mary Saunders; Lauren M. Dimapasoc; Seung Hyup Jeong; Bum Jin Kim; Suhee Kim; Minkyung So; Kwang Sik Lee; Jae Han Kim; Kit S. Lam; Carlito B. Lebrilla; Hyun Joo An

In clinical settings, biopsies are routinely used to determine cancer type and grade based on tumor cell morphology, as determined via histochemical or immunohistochemical staining. Unfortunately, in a significant number of cases, traditional biopsy results are either inconclusive or do not provide full subtype differentiation, possibly leading to inefficient or ineffective treatment. Glycomic profiling of the cell membrane offers an alternate route toward cancer diagnosis. In this study, isomer-sensitive nano-LC/MS was used to directly obtain detailed profiles of the different N-glycan structures present on cancer cell membranes. Membrane N-glycans were extracted from cells representing various subtypes of breast, lung, cervical, ovarian, and lymphatic cancer. Chip-based porous graphitized carbon nano-LC/MS was used to separate, identify, and quantify the native N-glycans. Structure-sensitive N-glycan profiling identified hundreds of glycan peaks per cell line, including multiple isomers for most compositions. Hierarchical clusterings based on Pearson correlation coefficients were used to quickly compare and separate each cell line according to originating organ and disease subtype. Based simply on the relative abundances of broad glycan classes (e.g., high mannose, complex/hybrid fucosylated, complex/hybrid sialylated, etc.), most cell lines were readily differentiated. More closely related cell lines were differentiated based on several-fold differences in the abundances of individual glycans. Based on characteristic N-glycan profiles, primary cancer origins and molecular subtypes could be distinguished. These results demonstrate that stark differences in cancer cell membrane glycosylation can be exploited to create an MS-based biopsy, with potential applications toward cancer diagnosis and direction of treatment.


Journal of Proteome Research | 2013

Characterization of Novel O-Glycans Isolated from Tear and Saliva of Ocular Rosacea Patients

Sureyya Ozcan; Hyun Joo An; Ana Carolina Vieira; Gun Wook Park; Jae Han Kim; Mark J. Mannis; Carlito B. Lebrilla

O-Glycans in saliva and tear isolated from patients suffering from ocular rosacea, a form of inflammatory ocular surface disease, were profiled, and their structures were elucidated using high resolution mass spectrometry. We have previously shown that certain structures, particularly sulfated oligosaccharides, increased in the tear and saliva of rosacea patients. In this study, the structures of these glycans were elucidated using primarily tandem mass spectrometry. There were important similarities in the glycan profiles of tears and saliva with the majority of the structures in common. The structures of the most abundant species common to both tear and saliva, which were also the most abundant species in both, were elucidated. For sulfated species, the positions of the sulfate groups were localized. The majority of the structures were new, with the sulfated glycans comprising mucin core 1- and core 2-type structures. As both saliva and tear are rich in mucins, it is suggested that the O-glycans are mainly components of mucins. The study further illustrates the strong correspondence between the glycans in the tear and saliva of ocular rosacea patients.


Applied Microbiology and Biotechnology | 2017

Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B

Jung Hyun Kim; Eun Ju Yun; Nari Seo; Sora Yu; Dong Hyun Kim; Kyung Mun Cho; Hyun Joo An; Jae Han Kim; In Geol Choi; Kyoung Heon Kim

The main carbohydrate of red macroalgae is agarose, a heterogeneous polysaccharide composed of d-galactose and 3,6-anhydro-l-galactose. When saccharifying agarose by enzymes, the unique physical properties of agarose, namely the sol–gel transition and the near-insolubility of agarose in water, limit the accessibility of agarose to the enzymes. Due to the lower accessibility of agarose to enzymes in the gel state than to the sol state, it is important to prevent the sol–gel transition by performing the enzymatic liquefaction of agarose at a temperature higher than the sol–gel transition temperature of agarose. In this study, a thermostable endo-type β-agarase, Aga16B, originating from Saccharophagus degradans 2-40T, was characterized and introduced in the liquefaction process. Aga16B was thermostable up to 50xa0°C and depolymerized agarose mainly into neoagarooligosaccharides with degrees of polymerization 4 and 6. Aga16B was applied to enzymatic liquefaction of agarose at 45xa0°C, which was above the sol–gel transition temperature of 1xa0% (w/v) agarose (∼35xa0°C) when cooling agarose. This is the first systematic demonstration of enzymatic liquefaction of agarose, enabled by determining the sol–gel temperature of agarose under specific conditions and by characterizing the thermostability of an endo-type β-agarase.


Applied and Environmental Microbiology | 2016

A Novel Glycoside Hydrolase Family 5 β-1,3-1,6-Endoglucanase from Saccharophagus degradans 2-40T and Its Transglycosylase Activity

Damao Wang; Do Hyoung Kim; Nari Seo; Eun Ju Yun; Hyun Joo An; Jae Han Kim; Kyoung Heon Kim

ABSTRACT In this study, we characterized Gly5M, originating from a marine bacterium, as a novel β-1,3-1,6-endoglucanase in glycoside hydrolase family 5 (GH5) in the Carbohydrate-Active enZyme database. The gly5M gene encodes Gly5M, a newly characterized enzyme from GH5 subfamily 47 (GH5_47) in Saccharophagus degradans 2-40T. The gly5M gene was cloned and overexpressed in Escherichia coli. Through analysis of the enzymatic reaction products by thin-layer chromatography, high-performance liquid chromatography, and matrix-assisted laser desorption ionization–tandem time of flight mass spectrometry, Gly5M was identified as a novel β-1,3-endoglucanase (EC 3.2.1.39) and bacterial β-1,6-glucanase (EC 3.2.1.75) in GH5. The β-1,3-endoglucanase and β-1,6-endoglucanase activities were detected by using laminarin (a β-1,3-glucan with β-1,6-glycosidic linkages derived from brown macroalgae) and pustulan (a β-1,6-glucan derived from fungal cell walls) as the substrates, respectively. This enzyme also showed transglycosylase activity toward β-1,3-oligosaccharides when laminarioligosaccharides were used as the substrates. Since laminarin is the major form of glucan storage in brown macroalgae, Gly5M could be used to produce glucose and laminarioligosaccharides, using brown macroalgae, for industrial purposes. IMPORTANCE In this study, we have discovered a novel β-1,3-1,6-endoglucanase with a unique transglycosylase activity, namely, Gly5M, from a marine bacterium, Saccharophagus degradans 2-40T. Gly5M was identified as the newly found β-1,3-endoglucanase and bacterial β-1,6-glucanase in GH5. Gly5M is capable of cleaving glycosidic linkages of both β-1,3-glucans and β-1,6-glucans. Gly5M also possesses a transglycosylase activity toward β-1,3-oligosacchrides. Due to the broad specificity of Gly5M, this enzyme can be used to produce glucose or high-value β-1,3- and/or β-1,6-oligosaccharides.


Biotechnology for Biofuels | 2017

Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pretreated lignocellulosic substrates

In Jung Kim; Nari Seo; Hyun Joo An; Jae Han Kim; Paul Harris; Kyoung Heon Kim

BackgroundLytic polysaccharide monooxygenase (LPMO) is a group of recently identified proteins that catalyze oxidative cleavage of the glycosidic linkages of cellulose and other polysaccharides. By utilizing the oxidative mode of action, LPMOs are able to enhance the efficiency of cellulase in the hydrolysis of cellulose. Particularly, auxiliary activity family 9 (AA9) is a group of fungal LPMOs that show a type-dependent regioselectivity on cellulose in which Types 1, 2, and 3 hydroxylate at C1, C4, and C1 and C4 positions, respectively. In this study, we investigated comparative characteristics of TtAA9E from Thielavia terrestris belonging to Type 1 and TaAA9A from Thermoascus aurantiacus belonging to Type 3 on cellulose and pretreated lignocellulose.ResultsFrom product analysis, TtAA9E dominantly generated oligosaccharides with an aldonic acid form, which is an evidence of C1 oxidation, while TaAA9A generated oligosaccharides with both aldonic acid and 4-ketoaldose forms, which is evidence of C1 and C4 oxidations, respectively. For hydrolysis of cellulose (Avicel) by cellulase, higher synergism was observed for TtAA9E than for TaAA9A. For hydrolysis of pretreated lignocellulose using rice straw, synergistic behaviors of TtAA9E and TaAA9A were different depending on the pretreatment of rice straw. Specifically, on acid-pretreated rice straw, TtAA9E showed a higher synergism than TaAA9A while on alkali-pretreated rice straw, TaAA9A showed a higher synergism than TtAA9E.ConclusionsWe show type-dependent action modes of TtAA9E and TaAA9A for cellulose oxidation together with substrate-dependent synergistic hydrolysis of cellulosic substrates. The results obtained from this study indicate the different behaviors of AA9s on cellulose and pretreated lignocellulose, suggesting a selection of AA9 proteins specific to substrates is required for industrial utilization.

Collaboration


Dive into the Jae Han Kim's collaboration.

Top Co-Authors

Avatar

Hyun Joo An

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Mills

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nari Seo

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sureyya Ozcan

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel Garrido

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Bum Jin Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge