Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae-Ho Bae is active.

Publication


Featured researches published by Jae-Ho Bae.


Experimental and Molecular Medicine | 2006

Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation

Jooyoung Kim; Young-Ok Son; Soon-Won Park; Jae-Ho Bae; Joo Seop Chung; Hyung Hoi Kim; Byung-Seon Chung; Sun-Hee Kim; Chi-Dug Kang

In this study, we have investigated if current cancer therapeutic modalities including hyperthermia and ionizing radiation can increase the expression of NKG2D ligands in human cancer cell lines. The expressions of NKG2D ligands were induced by both heat shock and ionizing radiation in various cell lines including KM12, NCI-H23, HeLa and A375 cells with peaks at 2 h and 9 h after treatment, respectively, although inducibility of each NKG2D ligand was various depending on cell lines. During the induction of NKG2D ligands, heat shock protein 70 was induced by heat shock but not by ionizing radiation. These results were followed by increased susceptibilities to NK cell-mediated cytolysis after treatment with heat shock and ionizing radiation. These results suggest that heat shock and ionizing radiation induce NKG2D ligands and consequently might lead to increased NK cell-mediated cytotoxicity in various cancer cells.


Molecular Cancer | 2010

TRAIL sensitize MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases

Suk-Bin Seo; Jung-Gu Hur; Mi-Ju Kim; Jaewon Lee; Hak-Bong Kim; Jae-Ho Bae; Dong-Wan Kim; Chi-Dug Kang; Sun-Hee Kim

BackgroundThe development of new modulator possessing high efficacy, low toxicity and high selectivity is a pivotal approach to overcome P-glycoprotein (P-gp) mediated multidrug resistance (MDR) in cancer treatment. In this study, we suggest a new molecular mechanism that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) down-regulates P-glycoprotein (P-gp) through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases and thereby sensitize MDR cells to MDR-related drugs.ResultsMDR variants, CEM/VLB10-2, CEM/VLB55-8 and CEM/VLB100 cells, with gradually increased levels of P-gp derived from human lymphoblastic leukemia CEM cells, were gradually more susceptible to TRAIL-induced apoptosis and cytotoxicity than parental CEM cells. The P-gp level of MDR variants was positively correlated with the levels of DNA-PKcs, pAkt, pGSK-3β and c-Myc as well as DR5 and negatively correlated with the level of c-FLIPs. Hypersensitivity of CEM/VLB100 cells to TRAIL was accompanied by the activation of mitochondrial apoptotic pathway as well as the activation of initiator caspases. In addition, TRAIL-induced down-regulation of DNA-PKcs/Akt/GSK-3β pathway and c-FLIP and up-regulation of cell surface expression of death receptors were associated with the increased susceptibility to TRAIL of MDR cells. Moreover, TRAIL inhibited P-gp efflux function via caspase-3-dependent degradation of P-gp as well as DNA-PKcs and subsequently sensitized MDR cells to MDR-related drugs such as vinblastine and doxorubicin. We also found that suppression of DNA-PKcs by siRNA enhanced the susceptibility of MDR cells to vincristine as well as TRAIL via down-regulation of c-FLIP and P-gp expression and up-regulation of DR5.ConclusionThis study showed for the first time that the MDR variant of CEM cells was hypersensitive to TRAIL due to up-regulation of DR5 and concomitant down-regulation of c-FLIP, and degradation of P-gp and DNA-PKcs by activation of caspase-3 might be important determinants of TRAIL-induced sensitization of MDR cells to MDR-related drugs. Therefore, combination of TRAIL and chemotherapeutic drugs may be a good strategy for treatment of cancer with multidrug resistance.


Journal of Immunotherapy | 2010

Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70.

Jae-Ho Bae; Jooyoung Kim; Mi-Ju Kim; Sung-Ho Chang; You-Soo Park; Cheol-Hun Son; Soo-Jung Park; J Joo-Seop Chung; Eun-Yup Lee; Sun-Hee Kim; Chi-Dug Kang

It is known that treatments with heat shock, some anticancer drugs, and ionizing radiation increase the expression of heat-shock proteins (HSPs) and natural killer group 2D (NKG2D) ligands in tumor cells. The increased HSPs may make the tumor cells resistant to apoptosis and reduction of HSPs may make the tumor cells more susceptible to natural killer (NK)-cell mediated lysis of tumor cells. In this study, we investigated whether quercetin which has inhibitory activities against heat-shock factor, protein kinase C, nuclear factor-κB, and phosphatidyl inositol 3-kinase, can modulate the expression of NKG2D ligands and suppress the HSPs in tumor cells. The results of this study showed that quercetin significantly induced the expression of several NKG2D ligands including major histocompatibility complex class I-related chain B, UL16-binding protein 1, and UL16-binding protein 2 in K562, SNU1, and SNU-C4 cells. The quercetin-treated K562, SNU1, and SNU-C4 cells showed an enhanced susceptibility to NK-92 cells through induction of NKG2D ligands. This increased expression of NKG2D ligands seemed to be due to the inhibition of the nuclear factor-κB and phosphatidyl inositol 3-kinase pathways. The findings of this study suggest that the induced NKG2D ligands with the decrease of HSP70 protein by quercetin may provide an attractive strategy to improve the effectiveness of NK cell-based cancer immunotherapy.


Biochemical Pharmacology | 2009

Trichostatin A sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by down-regulation of c-FLIPL via inhibition of EGFR pathway.

Soo-Jung Park; Mi-Ju Kim; Hak-Bong Kim; Hee-Young Sohn; Jae-Ho Bae; Chi-Dug Kang; Sun-Hee Kim

TRAIL-resistant cancer cells can be sensitized to TRAIL by combination therapy. In this study, we investigated the effect of trichostatin A (TSA), a histone deacetylase inhibitor, to overcome the TRAIL resistance in human ovarian cancer cells. Co-treatment of human ovarian cancer cells with TSA and TRAIL synergistically inhibited cell proliferation and induced apoptosis. The combined treatment of ovarian cancer SKOV3 cells with TSA and TRAIL significantly activated caspase-8 and truncated Bid, resulting in the cytosolic accumulation of cytochrome c as well as the activation of caspase-9 and -3. Moreover, we found that down-regulation of c-FLIP(L) might contribute to TSA-mediated sensitization to TRAIL-induced apoptosis in SKOV3 cells, and this result was supported by showing that down- or up-regulation of c-FLIP(L) with transfection of siRNA or plasmid sensitized or made SKOV3 cells resistant to TRAIL-induced apoptosis, respectively. TSA or co-treatment with TSA alone and TRAIL also resulted in down-regulation of EGFR1/2 and dephosphorylation of its downstream targets, AKT and ERK. Treatment of SKOV3 cells with PKI-166 (EGFR1/2 inhibitor), LY294002 (AKT inhibitor), and PD98059 (ERK inhibitor) decreased c-FLIP(L) expression and co-treatment with TRAIL further reduced the level of c-FLIP(L,) respectively, as did TSA. Collectively, our data suggest that TSA-mediated sensitization of ovarian cancer cells to TRAIL is closely correlated with down-regulation of c-FLIP(L) via inhibition of EGFR pathway, involving caspase-dependent mitochondrial apoptosis, and combination of TSA and TRAIL may be an effective strategy for treating TRAIL-resistant human ovarian cancer cells.


Experimental Cell Research | 2009

Cotreatment with apicidin overcomes TRAIL resistance via inhibition of Bcr-Abl signaling pathway in K562 leukemia cells.

Soo-Jung Park; Mi-Ju Kim; Hak-Bong Kim; Hee-Young Sohn; Jae-Ho Bae; Chi-Dug Kang; Sun-Hee Kim

TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic cytokine that is capable of inducing apoptosis in a wide variety of cancer cells but not in normal cells. Although many cancer cells are sensitive to TRAIL-induced apoptosis, chronic myeloid leukemia (CML) develops resistance to TRAIL. In this study, we investigated whether apicidin, a novel histone deacetylase inhibitor, could overcome the TRAIL resistance in CML-derived K562 cells. Compared to treatment with apicidin or TRAIL alone, cotreatment with apicidin and TRAIL-induced apoptosis synergistically in K562 cells. This combination led to activation of caspase-8 and Bcl-2 interacting domain (Bid), resulting in the cytosolic accumulation of cytochrome c from mitochondria as well as an activation of caspase-3. Treatment with apicidin resulted in down-regulation of Bcr-Abl and inhibition of its downstream target, PI3K/AKT-NF-kappaB pathway. In addition, apicidin decreased the level of NF-kappaB-dependent Bcl-x(L), leading to caspase activation and Bid cleavage. These results suggest that apicidin may sensitize K562 cells to TRAIL-induced apoptosis through caspase-dependent mitochondrial pathway by regulating expression of Bcr-Abl and its related anti-apoptotic proteins. Therefore, the present study suggests that combination of apicidin and TRAIL may be an effective strategy for treating TRAIL-resistant Bcr-Abl expressing CML cells.


Journal of Immunotherapy | 2008

Induction of NKG2D ligands and subsequent enhancement of NK cell-mediated lysis of cancer cells by arsenic trioxide.

Jooyoung Kim; Jae-Ho Bae; Sang-Hwa Lee; Eun-Yup Lee; Byung-Seon Chung; Sun-Hee Kim; Chi-Dug Kang

Natural killer (NK) cells are important effector cells in immune responses to tumor cells and the activation of NK cells is mediated through specific interactions between activating receptors and their cognate ligands. Recently, it has been demonstrated that induction of NKG2D ligands on tumor cells by various stresses render them more sensitive to NK cell-mediated killing. Therefore, in this study, it was investigated whether arsenic trioxide (ATO) could up-regulate NKG2D ligands on tumor cells and increase the susceptibility of cancer cells against NK cells. ATO increased transcription of NKG2D ligands, predominantly ULBP1, in various cancer cell lines, such as K562 chronic myelogenous leukemic cells, NB4 acute promyelocytic leukemic cells, and MCF7 breast cancer cells, and subsequently the surface expression of NKG2D ligands. These results were followed by increased susceptibility of cancer cells to NK cell-mediated cytotoxicity after treatment with ATO. This increase in cytotoxicity was abolished by addition of a blocking NKG2D monoclonal antibody, indicating that the increased susceptibility of ATO-treated cancer cells to cytotoxicity of NK cells was mediated through up-regulation of NKG2D ligands. In addition, abrogation of heat shock proteins induction with KNK437 would sensitize the ATO-treated MCF-7 cells to NK cell-mediated killing. This study suggests that the immunomodulatory property of ATO would be an attractive strategy to improve the effectiveness of NK cell-based cancer immunotherapy.


Biochemical Pharmacology | 2012

Amurensin G, a novel SIRT1 inhibitor, sensitizes TRAIL-resistant human leukemic K562 cells to TRAIL-induced apoptosis

Hak-Bong Kim; Mi-Ju Kim; Su-Hoon Lee; Jaewon Lee; Jae-Ho Bae; Dong-Wan Kim; Trong Tuan Dao; Won Keun Oh; Chi-Dug Kang; Sun-Hee Kim

Many types of cancer cells remain resistant towards TRAIL-induced cytotoxicity by the blockade of apoptotic signaling cascades. Thus, sensitizers are needed to enhance the effect of TRAIL-based cancer therapies. Although synergistic tumor cell death has been reported when various HDAC inhibitors were administered with TRAIL in a variety of human cancers, the effect of inhibitors of Class III HDAC such as SIRT1 have not been reported. We reported here for the first time that inhibition of SIRT1 augmented the cytotoxic and apoptotic effects of TRAIL on human leukemic K562 cells. Knockdown of SIRT1 or treatment with amurensin G, a potent new SIRT1 inhibitor, up-regulated the levels of DR5 and c-Myc and down-regulated the level of c-FLIP(L/S). Furthermore, knockdown of SIRT1 or treatment with amurensin G augmented the molecular responses to TRAIL, including activation of caspase-8, -9 and -3, PARP cleavage, up-regulation of Bax, and down-regulation of Bcl-2. Amurensin G-enhanced TRAIL-induced apoptosis was abrogated by caspase inhibitor Z-VAD-FMK. These findings suggest that the suppression of SIRT1 with siRNA or amurensin G sensitize the TRAIL-resistant K562 cell to TRAIL-induced apoptosis, possibly by the up-regulation of c-Myc and DR5 surface expression and the down-regulations of c-FLIP and Mcl-1. In addition, amurensin G, a potent new SIRT1 inhibitor, would be used as a sensitizer of TRAIL in TRAIL-resistant leukemic cells.


Journal of Immunotherapy | 2011

EGFR Inhibitors Enhanced the Susceptibility to NK Cell-mediated Lysis of Lung Cancer Cells

Hyunsu Kim; Sun-Hee Kim; Mi-Ju Kim; So-Jung Kim; Soo-Jung Park; Joo-Seop Chung; Jae-Ho Bae; Chi-Dug Kang

As quercetin, which can inhibit phosphatidylinositol 3-kinase, nuclear factor-kappa B, and protein kinase C (PKC) pathways, induced expression of natural killer group 2, member D (NKG2D) ligands on cancer cells and made the cells sensitive to NK –cell-mediated killing; inhibition of epidermal growth factor receptor (EGFR) pathway might lead to induction of NKG2D ligands. In this study, it was investigated whether EGFR inhibitors, including erlotinib or gefitinib, could regulate expression of NKG2D ligands in various lung cancer cells including A549, NCI-H23, and SW-900. The EGFR inhibitors predominantly increased transcription and surface expression of ULBP1, and subsequently increased susceptibility of the cancer cells to NK-92 cells. When the selective inhibitors of nuclear factor-kappa B, phosphatidylinositol 3-kinase, mitogen-activated protein kinases, and PKC were treated to discriminate downstream signaling of EGFR pathway, expression of ULBP1 in the cancer cells was induced by inhibition of PKC. Treatment with phorbol 12-myristate 13-acetate restored the EGFR inhibitor-induced ULBP1 transcription. Binding activity to ULBP1 promoter region of AP-2&agr;, which suggested as suppressor of expression of ULBP1, was decreased by treatment with EGFR inhibitors, and restored by pretreatment with phorbol 12-myristate 13-acetate in A549 and SW-900. Rottlerin, a PKC&dgr; inhibitor, also decreased the binding activity of AP-2&agr; in dose-dependent manner. This study suggests that EGFR inhibitors enhanced the susceptibility to NK cell-mediated lysis of lung cancer cells by induction of ULBP1 by inhibition of PKC pathway and therapeutic efficacy of EGFR inhibitors in lung cancer may be mediated in part by increased susceptibility to NK cell-mediated cytotoxicity.


Biochimica et Biophysica Acta | 2011

Suppression of multidrug resistance by treatment with TRAIL in human ovarian and breast cancer cells with high level of c-Myc

Dae-Young Kim; Mi-Ju Kim; Hak-Bong Kim; Jaewon Lee; Jae-Ho Bae; Dong-Wan Kim; Chi-Dug Kang; Sun-Hee Kim

In this study, we investigated the role of c-Myc in overcoming multidrug resistance (MDR) in human ovarian and breast cancer cells by TRAIL. We showed that P-gp expressing MDR variants (Hey A8-MDR and MCF7-MDR cells) with high level of c-Myc were highly susceptible to TRAIL treatment when compared to their drug-sensitive parental human ovarian cancer Hey A8 and breast MCF-7 cells, respectively. Up-regulation of DR5 TRAIL receptor and down-regulation of c-FLIP and the promotion of caspase-dependent cell death, which contribute to TRAIL sensitization of MDR cells, were regulated by the over-expressed c-Myc in the MDR cells. After targeted inhibition of c-Myc with specific siRNA, these responses to TRAIL disappeared and TRAIL-induced apoptosis was also suppressed in MCF7-MDR cells. Treatment with TRAIL significantly reduced P-glycoprotein (P-gp)-mediated efflux of rhodamine123 in both Hey A8-MDR and MCF7-MDR cells. Furthermore, TRAIL significantly potentiated the cytotoxicity of vinblastine, vincristine, doxorubicin and VP-16 that are P-gp substrate anticancer drugs in both MDR cells, which resulted in the reversal effect of TRAIL on the MDR phenotype. The present study shows for the first time that elevated c-Myc expression in the MDR cells plays a critical role in overcoming MDR by TRAIL that can act as a specific sensitizer for P-gp substrate anticancer drug.


Journal of Ethnopharmacology | 2010

Dryopteris crassirhizoma has anti-cancer effects through both extrinsic and intrinsic apoptotic pathways and G0/G1 phase arrest in human prostate cancer cells

Sung-Ho Chang; Jae-Ho Bae; Doo-Pyo Hong; Kang-Duk Choi; Song-Cheol Kim; Erk Her; Sun-Hee Kim; Chi-Dug Kang

AIM OF THE STUDY The inhibitory effect of Dryopteris crassirhizoma on the proliferation of human metastatic prostate PC3-MM2 cells and the mechanism of action were examined to identify its anti-cancer properties. The effect of the extract on cell cycle progression and its combined cytotoxic effect with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on PC3-MM2 cells were also investigated. MATERIALS AND METHODS The anti-proliferative effects of Dryopteris crassirhizoma were examined by culturing PC3-MM2 cells in the presence or absence of various concentrations of Dryopteris crassirhizoma extract, and the inhibitory effects on cell proliferation were determined by Cell Counting Kit (CCK)-8 analysis. The quantities of apoptosis-inducing proteins were measured by western blotting analysis. Cell cycle progression was analyzed by PI staining using flow cytometry. RESULTS Dryopteris crassirhizoma (50 and 100 microg/ml) inhibited markedly the proliferation of PC-3 and PC3-MM2 cells without cytotoxicity to normal (spleen) cells from BALB/C mice. Dryopteris crassirhizoma (100 microg/ml) effectively induced apoptosis through the activation of caspase-3, -8, -9, bid, and PARP in PC3-MM2 cells. The cells exposed to Dryopteris crassirhizoma increased significantly the accumulation of the DNA contents in the G0/G1 phase and sub-G1 phase in contrast to the control. The combined cytotoxic effects of Dryopteris crassirhizoma and TRAIL induced the increased activity of 29% in contrast to the sum of the inhibitory effects of each agent alone. CONCLUSIONS Dryopteris crassirhizoma has anti-cancer properties by inducing cell cycle arrest and apoptosis through the extrinsic and intrinsic pathway in PC3-MM2 cells. The extract also showed a combined effect with TRAIL on the inhibition of proliferation in the cells. These findings suggest that possibly its extract could be used for treating androgen-independent prostate cancer with minimal side effects.

Collaboration


Dive into the Jae-Ho Bae's collaboration.

Top Co-Authors

Avatar

Sun-Hee Kim

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chi-Dug Kang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Mi-Ju Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Hak-Bong Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Cheol-Hun Son

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Dong-Wan Kim

Seoul National University Hospital

View shared research outputs
Top Co-Authors

Avatar

You-Soo Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaewon Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Chang-Sik Ha

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge