Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae-Hyeon Cho is active.

Publication


Featured researches published by Jae-Hyeon Cho.


BMC Complementary and Alternative Medicine | 2012

Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

Gon Sup Kim; Hyoung Joon Park; Jong-Hwa Woo; Mi-Kyeong Kim; Phil-Ok Koh; Wongi Min; Yeoung-Gyu Ko; Chung-Hei Kim; Chung Kil Won; Jae-Hyeon Cho

BackgroundObesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF) on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells.MethodsDuring adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation.ResultsThe insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9), which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes.ConclusionsIn the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently inhibits the activation of PPARγ and C/EBPα. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation.


Neuroscience Letters | 2008

Estradiol attenuates the focal cerebral ischemic injury through mTOR/p70S6 kinase signaling pathway.

Phil-Ok Koh; Jae-Hyeon Cho; Chung-Kil Won; Hyo-Jong Lee; Jin-Hee Sung; Myeong-Ok Kim

We previously showed that estradiol prevents neuronal cell death through the activation of Akt and its downstream targets Bad and FKHR. This study investigated whether estradiol modulates the survival pathway through other downstream targets of Akt, including mammalian target of rapamycin (mTOR) and p70S6 kinase. It is known that mTOR is a downstream target of Akt and a central regulator of protein synthesis, cell growth, and cell cycle progression. Adult female rats were ovariectomied and treated with estradiol prior to middle cerebral artery occlusion (MCAO). Brains were collected 24h after MCAO and infarct volumes were analyzed. We confirmed that estradiol significantly reduces infarct volume and decreases the number of positive cells for TUNEL staining in the cerebral cortex. Brain injury-induced a decrease in phospho-mTOR and phospho-p70S6 kinase. Estradiol prevented the injury-induced decrease in Akt activation and phosphorylation of mTOR and p70S6 kinases, and the subsequent decrease in S6 phosphorylation. Our findings suggest that estradiol plays a potent protective role against brain injury by preventing the injury-induced decrease of mTOR and p70S6 kinase phosphorylation.


PLOS ONE | 2013

Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity.

Yuno Song; Hyoung Joon Park; Suk Nam Kang; Sun-Hee Jang; Soo-Jung Lee; Yeoung-Gyu Ko; Gon-Sup Kim; Jae-Hyeon Cho

This study examined the anti-obesity effect and mechanism of action of blueberry peel extracts (BPE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. The levels of lipid accumulation were measured, along with the changes in the expression of genes and proteins associated with adipocyte differentiation in 3T3-L1 cells. Evidenced by Oil-red O staining and triglyceride assay, BPE dose-dependently inhibited lipid accumulation at concentrations of 0, 50, and 200 µg/ml. BPE decreased the expression of the key adipocyte differentiation regulator C/EBPβ, as well as the C/EBPα and PPARγ genes, during the differentiation of preadipocytes into adipocytes. Moreover, BPE down-regulated adipocyte-specific genes such as aP2 and FAS compared with control adipocytes. The specific mechanism mediating the effects of BP revealed that insulin-stimulated phosphorylation of Akt was strongly decreased, and its downstream substrate, phospho-GSK3β, was downregulated by BPE treatment in 3T3-L1 cells. Together, these data indicated that BP exerted anti-adipogenic activity by inhibiting the expression of PPARγ and C/EBPβ and the Akt signaling pathway in 3T3-L1 adipocytes. Next, we investigated whether BP extracts attenuated HFD-induced obesity in rats. Oral administration of BPE reduced HFD-induced body weight gain significantly without affecting food intake. The epididymal or perirenal adipose tissue weights were lower in rats on an HFD plus BPE compared with the tissue weights of HFD-induced obese rats. Total cholesterol and triglyceride levels in the rats fed BPE were modestly reduced, and the HDL-cholesterol level was significantly increased in HFD plus BP-fed rats compared with those of HFD-fed rats. Taken together, these results demonstrated an inhibitory effect of BP on adipogenesis through the down-regulation of C/EBPβ, C/EBPα, and PPARγ and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells. Moreover, BPE reduced body weight gain and inhibited fat accumulation in an HFD-induced animal model of obesity.


Journal of Medicinal Food | 2014

Schisandra chinensis Prevents Alcohol-Induced Fatty Liver Disease in Rats

Hyoung Joon Park; Soo-Jung Lee; Yuno Song; Sun-Hee Jang; Yeoung-Gyu Ko; Suk Nam Kang; Byung Yeoup Chung; Hong-Duck Kim; Gon-Sup Kim; Jae-Hyeon Cho

Schisandra chinensis (SC), a traditional herbal medicine, has been prescribed for patients suffering from various liver diseases, including hepatic cancer, hypercholesterolemia, and CCl₄-induced liver injury. We investigated whether SC extract has a protective effect on alcohol-induced fatty liver and studied its underlying mechanisms. Rats were fed with ethanol by intragastric administration every day for 5 weeks to induce alcoholic fatty liver. Ethanol treatment resulted in a significant increase in alanine aminotransferase, aspartate aminotransferase, and hepatic triglyceride (TG) levels and caused fatty degeneration of liver. Ethanol administration also elevated serum TG and total cholesterol (TC) and decreased high-density lipoprotein (HDL) cholesterol levels. However, after administration of ethanol plus SC extracts, the ethanol-induced elevation in liver TC and TG levels was reversed. Elevation in serum TG was not observed after treatment with SC. Moreover, compared with the ethanol-fed group, the rats administered ethanol along with SC extracts for 5 weeks showed attenuated fatty degeneration and an altered lipid profile with decreased serum TC and TG, and increased HDL cholesterol levels. Chronic ethanol consumption did not affect peroxisome proliferator-activated receptor γ (PPARγ) levels, but it decreased PPARα and phospho-AMP-activated protein kinase (AMPK) levels in the liver. However, SC prevented the ethanol-induced decrease in PPARα expression and induced a significant decrease in sterol regulatory element-binding protein-1 expression and increase in phospho-AMPK expression in rats with alcoholic fatty liver. SC administration resulted in a significant decrease in intracellular lipid accumulation in hepatocytes along with a decrease in serum TG levels, and it reversed fatty liver to normal conditions, as measured by biochemical and histological analyses. Our results indicate that the protective effect of SC is accompanied by a significant increase in phospho-AMPK and PPARα expression in hepatic tissue of alcoholic rats, thereby suggesting that SC has the ability to prevent ethanol-induced fatty liver, possibly through activation of AMPK and PPARα signaling.


The American Journal of Chinese Medicine | 2009

Gingko biloba Extract (EGb 761) prevents ischemic brain injury by activation of the Akt signaling pathway.

Jae-Hyeon Cho; Jin-Hee Sung; Eun-Hae Cho; Chung-Kil Won; Hyo-Jong Lee; Myeong-Ok Kim; Phil-Ok Koh

EGb 761 is a standardized extract of Gingko biloba that exerts protective effects against ischemic brain injury. This study investigated whether EGb 761 modulates the neuroprotective effects through Akt and its downstream targets, Bad and FKHR. Adult male rats were treated with EGb 761 (100 mg/kg) or vehicle prior to middle cerebral artery occlusion (MCAO). Brains were collected 24 hours after MCAO and infarct volumes were analyzed. EGb 761 significantly reduced infarct volume. Potential activation was mearsured by phosphorylation of Akt at Ser(473), Bad at Ser(136), and FKHR at Ser(256) using Western blot analysis. EGb 761 prevented the injury-induced decrease of pAkt and its down stream targets, pBad and pFKHR. Furthermore, EGb 761 prevented the injury-induced increase of cleaved caspase-3 levels. In conclusion, this study suggests that EGb 761 prevents cell death due to brain injury and that EGb 761 protection is affected by preventing the injury-induce decrease of Akt phosphorylation.


BMC Complementary and Alternative Medicine | 2012

Centipede grass exerts anti-adipogenic activity through inhibition of C/EBPβ, C/EBPα, and PPARγ expression and the AKT signaling pathway in 3T3-L1 adipocytes

Hyoung Joon Park; Byung Yeoup Chung; Min Kwon Lee; Yuno Song; Seung Sik Lee; Gyo Moon Chu; Suk-Nam Kang; Young Min Song; Gon Sup Kim; Jae-Hyeon Cho

BackgroundCentipede grass (CG) originates from China and South America and is reported to contain several C-glycosyl flavones and phenolic constituents, including maysin and luteolin derivatives. This study aimed to investigate, for the first time, the antiobesity activity of CG and its potential molecular mechanism in 3T3-L1 cells.MethodsTo study the effect of CG on adipogenesis, differentiating 3T3-L1 cells were treated every day with CG at various concentrations (0–100 μg/ml) for six days. Oil-red O staining and triglyceride content assay were performed to determine the lipid accumulation in 3T3-L1 cells. The expression of mRNAs or proteins associated with adipogenesis was measured using RT-PCR and Western blotting analysis. We examined the effect of CG on level of phosphorylated Akt in 3T3-L1 cells treated with CG at various concentration s during adipocyte differentiation.ResultsDifferentiation was investigated with an Oil-red O staining assay using CG-treated 3T3-L1 adipocytes. We found that CG suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells in a dose-dependent manner. Treatment of the 3T3-L1 adipocytes with CG resulted in an attenuation of the expression of adipogenesis-related factors and lipid metabolic genes. The expression of C/EBPα and PPARγ, the central transcriptional regulators of adipogenesis, was decreased by the treatment with CG. The expression of genes involved in lipid metabolism, aP2 were significantly inhibited following the CG treatment. Moreover, the CG treatment down-regulated the phosphorylation levels of Akt and GSK3β.ConclusionsTaken collectively, these data indicated that CG exerts antiadipogenic activity by inhibiting the expression of C/EBPβ, C/EBPα, and PPARγ and the Akt signaling pathway in 3T3-L1 adipocytes.


PLOS ONE | 2014

Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

Hyoung Joon Park; Jisoo Yun; Sun-Hee Jang; Suk Nam Kang; Beong-Sam Jeon; Yeoung-Gyu Ko; Hong-Duck Kim; Chung-Kil Won; Gon-Sup Kim; Jae-Hyeon Cho

This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3-L1 cells and HFD adipose tissue.


Veterinary Immunology and Immunopathology | 2009

Molecular characterization of duck interleukin-17

Jeongmi Yoo; Seung I. Jang; Suk Kim; Jae-Hyeon Cho; Hu-Jang Lee; Man H. Rhee; Hyun S. Lillehoj; Wongi Min

Interleukin-17 (IL17), belonging to the Th17 family, is a proinflammatory cytokine produced by activated T cells. A 1034bp cDNA encoding duck IL17 (duIL17) was cloned from Con A-activated splenic lymphocytes of ducks. The encoded protein, which is predicted to consist of 169 amino acids, has a molecular weight of 18.8kDa and includes a 29 residue NH(2)-terminal signal peptide, a single potential N-linked glycosylation site, and six cysteine residues that are conserved in mammalian IL17. The duIL17 shared 84% amino acid sequence identity with the previously described chicken IL17 (chIL17), 36-47% to mammalian homologues, and open reading frame 13 of Herpesvirus saimiri (HVS13). The genomic structure of duIL17 was quite similar to its chicken and mammalian counterparts. The duIL17 mRNA expression was detected only in Con A-activated splenic lymphocytes by RT-PCR, although its expression was undetectable in a variety of normal tissues. Two mAbs against chIL17 showed cross-reactivity with duIL17 as detected by indirect ELISA and Western blot analysis. These findings indicate that the structure of IL17 is highly conserved among poultry, and two mAbs detecting common epitopes of IL17 are available for molecular and immunological studies of IL17 in birds.


Nutrients | 2014

Sasa borealis Stem Extract Attenuates Hepatic Steatosis in High-Fat Diet-induced Obese Rats

Yuno Song; Soo-Jung Lee; Sun-Hee Jang; Ji Hee Ha; Young Min Song; Yeoung-Gyu Ko; Hong-Duck Kim; Wongi Min; Suk Nam Kang; Jae-Hyeon Cho

The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease.


Molecules | 2013

Antioxidant and Antimicrobial Activities of Ethanol Extract from the Stem and Leaf of Impatiens balsamina L. (Balsaminaceae) at Different Harvest Times

Suk-Nam Kang; Young-Min Goo; Mi-Ra Yang; Rashid Ismael Hag Ibrahim; Jae-Hyeon Cho; Il-Suk Kim; Ok-Hwan Lee

The aim of this study was to investigate the total phenolic content, total flavonoid contents, antioxidant activity and antimicrobial activity of ethanolic extract from stems (S) and leaves (L) of Impatiens balsamina L. (Balsaminaceae), which were harvested in Korea on March 10, 2011 (S1 and L1), May 14, 2011 (S2 and L2), and July 5, 2011 (S3 and L3), respectively. Our results revealed that the total phenolic (79.55–103.94 mg CE/g extract) and flavonoid (57.43–104.28 mg QE/g extract) contents of leaf extract were higher (p < 0.01) than those of stem extract. Leaf extracts (L1, L2, and L3) exhibited stronger (p < 0.01) free radical scavenging activity (66.06, 63.71, and 72.19%, respectively) than that of the positive control. In terms of antimicrobial activity, leaf extracts showed higher inhibitory effects against microorganisms than those of stem extracts (S1, S2, and S3). Among the leaf extracts at different harvest times, L3 showed the greatest antimicrobial activity against both Gram negative and Gram positive strains. From these results, the leaf extract from I. balsamina L. might be a valuable bioactive resource, and would seem to be applicable as a natural antioxidant in food preservation.

Collaboration


Dive into the Jae-Hyeon Cho's collaboration.

Top Co-Authors

Avatar

Chung-Kil Won

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Gon-Sup Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Yuno Song

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Phil-Ok Koh

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sun-Hee Jang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Hyoung Joon Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Soo-Jung Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Oh-Sung Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Hong-Duck Kim

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Hwan-Hoo Seong

Rural Development Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge