Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae-Il Bang is active.

Publication


Featured researches published by Jae-Il Bang.


Developmental Dynamics | 2007

Serial Cloning of Pigs by Somatic Cell Nuclear Transfer: Restoration of Phenotypic Normality During Serial Cloning

Seong-Keun Cho; Jae-Hwan Kim; Jong-Yi Park; Yun-Jung Choi; Jae-Il Bang; Kyu-Chan Hwang; Eun-Jeong Cho; Sea-Hwan Sohn; Sang Jun Uhm; Deog-Bon Koo; Kyung-Kwang Lee; Teoan Kim; Jin-Hoi Kim

Somatic cell nuclear transfer (scNT) is a useful way to create cloned animals. However, scNT clones exhibit high levels of phenotypic instability. This instability may be due to epigenetic reprogramming and/or genomic damage in the donor cells. To test this, we produced transgenic pig fibroblasts harboring the truncated human thrombopoietin (hTPO) gene and used them as donor cells in scNT to produce first‐generation (G1) cloned piglets. In this study, 2,818 scNT embryos were transferred to 11 recipients and five G1 piglets were obtained. Among them, a clone had a dimorphic facial appearance with severe hypertelorism and a broad prominent nasal bridge. The other clones looked normal. Second‐generation (G2) scNT piglets were then produced using ear cells from a G1 piglet that had an abnormal nose phenotype. We reasoned that, if the phenotypic abnormality of the G1 clone was not present in the G2 and third‐generation (G3) clones, or was absent in the G2 clones but reappeared in the G3 clones, the phenotypic instability of the G1 clone could be attributed to faulty epigenetic reprogramming rather than to inherent/accidental genomic damage to the donor cells. Blastocyst rates, cell numbers in blastocyst, pregnancy rates, term placenta weight and ponderal index, and birth weight between G1 and G2 clones did not differ, but were significantly (P < 0.05) lower than control age‐ and sex‐matched piglets. Next, we analyzed global methylation changes during development of the preimplantation embryos reconstructed by donor cells used for the production of G1 and G2 clones and could not find any significant differences in the methylation patterns between G1 and G2 clones. Indeed, we failed to detect the phenotypic abnormality in the G2 and G3 clones. Thus, the phenotypic abnormality of the G1 clone is likely to be due to epigenetic dysregulation. Additional observations then suggested that expression of the hTPO gene in the transgenic clones did not appear to be the cause of the phenotypic abnormality in the G1 clones and that the abnormality was acquired by only a few of the G1 clones cells during its gestational development. Developmental Dynamics 236:3369–3382, 2007.


Theriogenology | 2012

Coculturing denuded oocytes during the in vitro maturation of bovine cumulus oocyte complexes exerts a synergistic effect on embryo development

Gautam Kumar Deb; A-Na Ha; J.I. Lee; Jae-Il Bang; Kyeong-Lim Lee; Il-Keun Kong

The present study examined the effect of coculturing cumulus oocyte complexes (COCs) and denuded oocytes (DOs) during in vitro maturation (IVM) on nuclear and cytoplasmic maturation, zona pellucida (ZP) hardening, the pattern of fertilization and glutathione peroxidase 1 (GPX1) gene expression in the oocyte. Furthermore, the rate of embryonic development and the quality of blastocysts were examined for both COCs and DOs. Three IVM conditions were studied: 1) the coculture of 12 COCs and 60 DOs, 2) COC control with 12 COCs, and 3) DO control with 60 DOs. The IVM was performed in a 120-μl droplet of TCM199-based IVM medium. Following IVM, in vitro fertilization (IVF) and in vitro culture (IVC) were conducted separately for the COCs and DOs (DO coculture) from the IVM coculture group. Coculturing COCs and DOs increased the percentage of oocytes reaching the blastocyst stage and the total number of cells per blastocyst in both the COC coculture (44.4 ± 8.6 vs 26.7 ± 9.7%, P < 0.01, and 137.9 ± 24.9 vs 121.7 ± 21.1, P < 0.05) and the DO coculture (20.5 ± 5.0 vs 11.1 ± 2.5%, P < 0.01, and 121.9 ± 27.5 vs 112.3 ± 33.2, P < 0.05) compared to their respective control groups. The synergistic effects of coculturing were detected as increased nuclear and cytoplasmic maturation, the prevention of ZP hardening, increased monospermic fertilization and increased expression of GPX1 in the oocytes in response to endogenous oocyte-secreted factors. In conclusion, coculturing COCs and DOs may be an effective culture system for both intact COCs and immature DOs.


Journal of Animal Science | 2011

9- retinoic acid improves developmental competence and embryo quality during in vitro maturation of bovine oocytes through the inhibition of oocyte tumor necrosis factor-α gene expression

Gautam Kumar Deb; Jae-Il Bang; S. J. Cho; H. C. Park; J. G. Lee; Il-Keun Kong

Retinoic acid (RA; all-trans RA and 9-cis RA) enhances embryo developmental competence and quality through multiple mechanisms affecting the oocyte and preimplantation embryo. Folliculogenesis and oocyte maturation are influenced by tumor necrosis factor-α (TNF-α) via inhibition of aromatase activity and estradiol secretion in granulosa cells. Retinoic acid inhibits TNF-α production in various cell lines. The aim of the present study was to determine whether oocyte TNF-α concentrations regulate developmental competence and embryo quality and if the beneficial effects of 9-cis RA are mediated through attenuation of oocyte TNF-α production. Bovine cumulus oocyte complexes collected from abattoir ovaries were matured in maturation medium in the absence (control) or presence of 5 nM 9-cis RA (RA), 100 ng/mL of recombinant bovine TNF-α (TNF), or 5 nM 9-cis RA + 100 ng/mL of recombinant bovine TNF-α (RA+TNF). Oocytes were subsequently collected for gene expression analysis or subjected to in vitro fertilization and culture. Apoptosis and gene expression were analyzed in d-8 blastocysts. Results indicated that 9-cis RA downregulated (P < 0.01) both basal and TNF-α-induced TNF-α mRNA in oocytes (1.0-fold in control, 0.4-fold in RA, 2.1-fold in TNF, and 0.7-fold in RA+TNF). The 9-cis RA increased (P < 0.001) blastocyst development rates (37.1 ± 6.9 vs. 23.6 ± 8.0%) and total cell number (138.4 ± 19.2 vs. 120.2 ± 24.5) and reduced (P < 0.001) the percentage of apoptotic cells (3.3 ± 2.0 vs. 5.6 ± 2.3%) compared with controls. Expression of caspase 3 (0.4- vs. 1.0-fold) and TNF-α (0.4- vs. 1.0-fold) mRNA was downregulated (P < 0.05) in RA-treated blastocysts compared with controls. Moreover, 9-cis RA rescued (P < 0.001) development rates (24.5 ± 11.1 vs. 15.6 ± 9.0%), increased total cell number (124.6 ± 36.5 vs. 106.9 ± 31.1), and reduced apoptosis (5.8 ± 2.0 vs. 8.1 ± 3.1%) in blastocysts exposed to TNF-α (TNF group). Caspase 3 (0.8-fold in RA+TNF vs. 2.2-fold in TNF) and TNF-α (0.3-fold in RA+TNF vs. 2.8-fold in TNF) mRNA expression was attenuated (P < 0.05) in TNF-α-treated blastocysts. In conclusion, the present study suggests that 9-cis RA exerts its beneficial roles on oocyte developmental competence and embryo quality by attenuating oocyte TNF-α mRNA expression.


Theriogenology | 2010

Enhanced histone acetylation in somatic cells induced by a histone deacetylase inhibitor improved inter-generic cloned leopard cat blastocysts

Hyo-Sang Lee; Xian-Feng Yu; Jae-Il Bang; Su-Jin Cho; Gautam Kumar Deb; Byeong-Woo Kim; Il-Keun Kong

The objective was to determine whether alterations of histone acetylation status in donor cells affected inter-generic SCNT (igSCNT)-cloned embryo development. Leopard cat cells were treated with trichostatin A (TSA; a histone deacetylase inhibitor) for 48 h, and then donor cells were transferred into enucleated oocytes from domestic cats. Compared to non-treated cells, the acetylated histone 3 at lysine 9 (AcH3K9) and histone 4 at lysine 5 (AcH4K5) in the TSA group increased for up to 48 h (P < 0.05). The AcH3K9 signal ratios of igSCNT group was higher than control group 3 h after activation (P < 0.05). Treatment with TSA significantly increased total cell number of blastocysts (109.1 ± 6.9 vs. 71.8 ± 2.9, mean ± SEM), with no significant effects on rates of cleavage or blastocyst development (71.1 ± 2.8 vs. 67.6 ± 2.9 and 12.2 ± 2.6 vs. 11.0 ± 2.6, respectively). When igSCNT cloned embryos were transferred into a domestic cat oviduct and recovered after 8 d, blastocyst development rates and total cell numbers were greater in the TSA-igSCNT group (20.7 ± 3.0% and 2847.6 ± 37.2) than in the control igSCNT group (5.7 ± 2.2% and 652.1 ± 17.6, P < 0.05). Average total cell numbers of blastocysts were approximately 4.4-fold higher in the TSA-igSCNT group (2847.6 ± 37.2, n = 10) than in the control group (652.1 ± 17.6, n = 8; P < 0.05), but were ∼2.9-fold lower than in vivo cat blastocysts produced by intrauterine insemination (8203.8 ± 29.6, n = 5; P < 0.001). Enhanced histone acetylation levels of donor cells improved in vivo developmental competence and quality of inter-generic cloned embryos; however, fewer cells in blastocysts derived from igSCNT than blastocysts produced by insemination may reduce development potential following intergeneric cloning (none of the cloned embryos were maintained to term).


Theriogenology | 2014

Differential expression of selected candidate genes in bovine embryos produced in vitro and cultured with chemicals modulating lipid metabolism

Nasser Ghanem; A-Na Ha; Md. Fakruzzaman; Jae-Il Bang; Sang-Chan Lee; Il-Keun Kong

Lipid accumulated in embryos produced in vitro has been linked to reductions in both quality and postcryopreservation viability. Therefore, the objective of the present study was to investigate the influence of lipid-reducing chemicals on embryo development, quality, and postcryopreservation viability, in addition to expression profiles of selected lipid metabolism-regulating genes. Bovine cumulus-oocyte complexes were matured and fertilized in vitro; eight-cell stage embryos were cultured in IVC medium supplemented with phenazine ethosulfate (PES), L-carnitine (LC), PES + LC, or no supplementation (control). Culturing embryos in medium with LC increased (P < 0.05) blastocyst rate (38.8%) compared with the other groups (control = 28.1%, PES = 27.1%, PES + LC = 26.3%). Embryos cultured with supplements had greater total cell number and fewer apoptotic cells than the control. Cytoplasmic lipid content was reduced, whereas mitochondria density was increased in embryos treated with culture supplements; this was linked to altered expression profiles of selected genes regulating lipid metabolism. For example, transcript abundance of transmembrane lipid gene (SGPP1) was greater in LC- and PES-treated embryos, and they had increased postcryopreservation hatching ability (indicative of embryo cryotolerance). In conclusion, the two lipid metabolism regulators added to the culture media had improved embryo quality and cryotolerance, but embryo development rate and downstream lipid metabolism-regulating genes were more influenced with LC supplementation.


Theriogenology | 2014

Production of female bovine embryos with sex-sorted sperm using intracytoplasmic sperm injection: efficiency and in vitro developmental competence.

Hyun-Tae Jo; Jae-Il Bang; Seong-Su Kim; Byung-Hyun Choi; Jong-In Jin; Heyng-Lyool Kim; In-Suk Jung; Tae-Kwang Suh; Nasser Ghanem; Zhongde Wang; Il-Keun Kong

The production of embryos with a preselected sex sperm is important in the livestock industry. In this study, we examined the efficiency of producing female embryos by intracytoplasmic sperm injection (ICSI) with flow cytometry sorted (ssICSI) and unsorted (usICSI) bovine sperm, and their developmental competence in vitro. For comparison, bovine embryos were also produced by in vitro fertilization (IVF) with sorted (ssIVF) and unsorted (usIVF) bovine sperm. The semen used in this study was from a bull selected for its high fertility and blastocyst developmental competence among four bulls. We first examined and compared pronuclear (PN) formation and cleavage rates of the produced embryos among the treatment groups. Our results demonstrated that PN formation rates (judged by two pronucleus [2PN]) and cleavage rates in ssIVF group (23.1% and 43.6%) were lower than those in the usIVF (71.1% and 71.6%), usICSI (73.1% and 92.8%) and ssICSI (75% and 79.1%) groups, respectively (P < 0.05). Moreover, the blastocyst formation rate in the ssIVF group was less than those in the usIVF, usICSI, and ssICSI groups (2.7% vs. 30.2%, 28.7% and 24.7%, respectively; P < 0.05). Importantly, we reported that the blastocyst formation rate in the ssICSI group was similar to that in the usICSI group, which indicated that ICSI can rescue the damage introduced to sperm by flow cytometry-mediated sex-sorting. Of note, we achieved a blastocyst formation rate in the ssICSI group to be comparable with the usIVF group. We then examined embryo quality by counting the number of normal and apoptotic cells in blastocysts. It was found that, despite the fact that blastocyst formation rate in the ssIVF group was significantly lower than those in the usIVF, usICSI and ssICSI groups, there was no difference in total and apoptotic cell numbers among these groups (P > 0.05). Finally, karyotyping analysis demonstrated that the proportion of female embryos in the ssICSI and ssIVF groups was 100%, whereas it was 58.8% and 57.8% in the usIVF and usICSI groups, respectively. In conclusion, ICSI with flow cytometry sorted bovine sperm provides an alternative approach to produce embryos with predetermined sex.


Proteomics | 2011

Proteomic analysis of placentas from cloned cat embryos identifies a set of differentially expressed proteins related to oxidative damage, senescence and apoptosis†

Jae-Il Bang; Dong-Won Bae; Hyo-Sang Lee; Gautam Kumar Deb; Myeong-Ok Kim; Sea-Hwan Sohn; Chang-Hee Han; Il-Keun Kong

Production of cloned mammals by somatic cell nuclear transfer is associated with functional and structural abnormalities of placentation and with abnormal fetal development. A proteomic analysis was performed in domestic cats (Felis catus) to compare cloned term placentas (CTP) obtained from cesarean section (CS) to control placentas obtained from CS or vaginal delivery. The expression of 20 proteins was altered in CTP (p<0.05) compared to control placentas. The two control groups showed that the method of delivery, vaginal delivery or CS, did not affect protein expression (p>0.05). A total of 13 proteins were up‐regulated in CTP, including apoptosis‐related cathepsin D (CD), annexin A1 and heat shock protein 27 (HSP 27), and seven proteins were down‐regulated in CTP, including prohibitin (PHB). The expression of PHB and CD was confirmed by Western blotting and immunofluorescence staining. The abnormal expression of PHB and CD correlated with the generation of reactive oxygen species, leading to decreased mitochondrial membrane potential and telomeric DNA, which are associated with cellular senescence and apoptosis. In summary, a specific pattern of abnormal protein expression is associated with the impaired development and functions of cloned placentas and hence with decreased fetal viability. Strategies aimed at restoring normal placental protein expression may increase the efficiency of somatic cell nuclear transfer and transgenic cat production and help restore endangered species.


Theriogenology | 2010

Effect of equine chorionic gonadotropin on the efficiency of superovulation induction for in vivo and in vitro embryo production in the cat

X.F. Yu; Su-Jin Cho; Jae-Il Bang; Hyo-Sang Lee; Y.S. Lee; T.H. Kwon; Gautam Kumar Deb; Il-Keun Kong

The effects of various dosages of equine chorionic gonadotropin (eCG) on superovulation induction for in vivo and in vitro embryo production were examined in stray cats (Felis catus). Cats (n=286) were allocated into five treatment groups with 0, 50, 100, 200, or 400 IU eCG, followed by 100 IU human chorionic gonadotropin (hCG). In vivo- and in vitro-produced blastocysts were obtained by artificial insemination (AI) and in vitro fertilization (IVF), somatic cell nucleus transfer (SCNT), or parthenogenetic activation (PA). The percentage of cats that developed mature follicles, the percentage of cats with collected embryos, and the mean number of in vivo blastocysts per cat were higher in the 200 IU treatment group (43.9%, 31.8%, and 1.53, respectively) compared with those of the other groups (P<0.05). The percentage of follicular developed cats, the percentage of cumulus-expanded oocytes, and the mean number of collected cumulus-oocyte complexes per cat in the 200 IU (56.7%, 67.8%, and 26.2, respectively) and 400 IU (53.3%, 64.2%, and 26.7, respectively) groups were higher than those in the other groups (P<0.05). Furthermore, the percentage of in vitro-produced blastocyst per cleaved embryos and the average cell number of the blastocysts from IVF (52.7% and 125.8, respectively) was higher than those of the blastocysts from PA (30.1% and 85.2) and higher than those of the blastocysts from SCNT (15.3% and 37.5; P<0.05). In conclusion, the current study demonstrated that in vivo and in vitro embryo production were affected by the dosage of eCG; the best results were obtained with 200 IU.


Animal Reproduction Science | 2013

Mitochondrial content and gene expression profiles in oocyte-derived embryos of cattle selected on the basis of brilliant cresyl blue staining

Md. Fakruzzaman; Jae-Il Bang; Kyeong-Lim Lee; Seong-Su Kim; A-Na Ha; Nasser Ghanem; Chang-Hee Han; Kyu-Woan Cho; Kenneth L. White; Il-Keun Kong

The aim of this study was to investigate the developmental rate, lipid and mitochondrial distribution and gene expression in oocyte-derived embryos selected on the basis of brilliant cresyl blue (BCB) staining. Lipid content and mitochondrial distribution in Day 8 blastocysts were evaluated by fluorescence intensity, while gene expression was analyzed by real-time PCR. The proportion of blastocysts (30.9%) was greater (P<0.05) in BCB+ than in BCB- oocytes (13%) but not different (P>0.05) from the control group (28.2%). Total cell number was also greater in BCB+ (155.1 ± 36.2) than in BCB- (116.6 ± 40.5) and control (127.5 ± 35.7) blastocysts. Furthermore, the apoptotic cell number was less in BCB+ (3.7 ± 4.4) than in BCB- blastocysts (8.7 ± 8.7) but not different from the control group (5.9 ± 3.9). BCB+ embryos contained more mitochondria compared to BCB- embryos (P<0.05). There was no significant difference in intercellular lipid accumulation in embryos from all groups. Interferon-τ (IFNτ), transforming growth factor β1 (TGFB1) and secreted seminal-vesicle Ly-6 protein 1 (SSLP1) gene expression was greater in BCB+ than in BCB- blastocysts. By contrast, Bcl2-associated X protein (BAX) and heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) gene expression was greater in BCB- than in BCB+ and control embryos. In conclusion, oocyte-derived embryos selected on the basis of BCB staining showed differences in developmental rate, quality, mitochondrial content and target gene expression compared to control embryos.


Journal of Animal Science | 2012

9-cis Retinoic acid inhibits cumulus cell apoptosis during the maturation of bovine cumulus-oocyte-complexes1

Gautam Kumar Deb; Jae-Il Bang; J. G. Lee; Il-Keun Kong

Cumulus cell (CC) apoptosis is inversely correlated with embryonic development in vitro. Therefore, inhibition of CC apoptosis is important for proper embryonic development and quality. Retinoic acids (all-transRA and 9-cisRA) are natural components of retinoids, and 9-cisRA is the physiologically active metabolite of retinoic acid in vitro. During in vitro maturation, 9-cisRA enhances oocyte competence through multiple mechanisms affecting the oocyte and preimplantation embryo; however, the effect of 9-cisRA on CC apoptosis has yet to be elucidated. The aim of the present study was to evaluate the effect of 9-cisRA on CC apoptosis and to identify the molecular mechanism underlying that effect. Bovine slaughterhouse cumulus-oocyte complexes (COC) were matured in vitro in the absence or presence of 5 nM 9-cisRA. Cumulus cells were collected from immature and matured COC for the detection of apoptosis and gene expression analysis. Results showed that 9-cisRA reduced the number of apoptotic CC by about 2.7 fold (P < 0.023), compared with control. However, apoptosis is rare in CC of immature COC (0.01% ± 0.001). Transcripts involved in the caspase cascade were down-regulated upon exposure to 9-cisRA, including tumor necrosis factor alpha (TNF-α, 11.1 fold, P < 0.001), tumor necrosis factor alpha receptor 1 (TNFR1, 2.3 fold, P < 0.01), caspase 9 (CASP9, 2.0 fold, P < 0.031), caspase 8 (CASP8, 2.2 fold, P < 0.012), and caspase 3 (CASP3, 2.1 fold, P < 0.006), while antiapoptotic B-cell lymphoma 2 (BCL2) transcript was increased (3.1 fold, P < 0.004), compared with control. In addition, 9-cisRA inhibited mitogen activated protein kinase mRNA expression in CC, including extracellular signal-regulated kinase 1/2 (ERK1, 2.7 fold, P < 0.02; ERK2, 2.7 fold, P < 0.03), and c-Jun N-terminal kinase (JNK, 1.6 fold, P < 0.044), as well as the activator protein-1 (AP1) family members c-jun (1.6 fold, P < 0.041) and c-fos (2.0 fold, P < 0.06). The transcript abundances of TNF-α, TNFR1, CASP9, CASP8, CASP3, ERK1, ERK1, JNK, and BCL2 were increased, while c-fos and c-jun mRNA expression was decreased in the matured CC. On the basis of the data, we suggest that 9-cisRA inhibits CC apoptosis during in vitro maturation of bovine COC.

Collaboration


Dive into the Jae-Il Bang's collaboration.

Top Co-Authors

Avatar

Il-Keun Kong

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Gautam Kumar Deb

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

A-Na Ha

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Kyeong-Lim Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Su-Jin Cho

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Md. Fakruzzaman

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byung-Hyun Choi

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Jong-In Jin

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Hyo-Sang Lee

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge