Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae-Il Kim is active.

Publication


Featured researches published by Jae-Il Kim.


Molecular Brain Research | 1999

Expression of cytokine genes and increased nuclear factor-kappa B activity in the brains of scrapie-infected mice.

Jae-Il Kim; Won-Kyu Ju; Jin-Ho Choi; Jin Kim; Eun-Kyoung Choi; Richard I. Carp; H. M. Wisniewski; Yong-Sun Kim

A number of aspects of the pathogenesis of scrapie remain to be elucidated. The cellular and molecular aspects of the neuropathology in scrapie suggest the possibility that the proinflammatory cytokines could act as pathogenic mediators in this neurodegenerative disease. To understand this possibility, we examined the expression of proinflammatory cytokine genes in brains of IM mice-infected with 87V scrapie agent. Additionally, we also analyzed the activity of nuclear factor-kappa B (NF-kappaB), which is the major transcriptional activator for inflammatory cytokines, and formation of reactive oxygen species (ROS) as a common upstream messenger for its activation. The induction of mRNAs of the inflammatory cytokines, IL-1alpha, IL-1beta and TNF-alpha, was detected only in the brains of scrapie-infected mice. The activity of NF-kappaB was significantly increased in the nuclear extracts from brains of the scrapie-infected group and the immunoreactivity of NF-kappaB was increased in the hippocampus and thalamus in the brains of scrapie-infected mice. The NF-kappaB immunoreactivity was observed mainly in GFAP-positive astrocytes and also detected in the PrP-amyloid plaques in the brains of 87V scrapie-infected mice. Gene expression of IL-6 and iNOS, the representative target genes for NF-kappaB activation, were activated only in the infected group. The production of ROS was significantly increased in the brain mitochondrial fractions of scrapie-infected mice. These results suggest that prion accumulation in astrocytes might activate NF-kappaB through the increase of ROS generation, and thus alterations in NF-kappaB-directed gene expression may contribute to both the neurodegeneration and proinflammatory responses which occur in scrapie.


Annals of the New York Academy of Sciences | 2006

Oxidative Stress and Neurodegeneration in Prion Diseases

Jae-Il Kim; Seung-Il Choi; Nam-Ho Kim; Jae-Kwang Jin; Eun-Kyoung Choi; Richard I. Carp; Yong-Sun Kim

Abstract: Transmissible spongiform encephalopathies (TSEs), also termed prion diseases, are a group of fatal neurodegenerative diseases that affect humans and a number of other animal species. The etiology of these diseases is thought to be associated with the conversion of a normal protein, PrPC, into an infectious, pathogenic form, PrPSc. The PrPSc form shows greater protease resistance than PrPC and accumulates in affected individuals, often in the form of extracellular plaques. The pathogenesis and the molecular basis of neuronal cell death in these diseases are not well understood. Oxidative stress has been proposed to play an important role in the pathogenesis of several neurodegenerative disorders. In the present study, evidence of oxidative stress in scrapie, the archetype disease of the TSEs, is discussed. In addition, the mechanisms whereby oxidative stress could lead to neuronal degeneration are described.


Carbohydrate Polymers | 2012

Molecular characteristics and anti-inflammatory activity of the fucoidan extracted from Ecklonia cava

Seung-Hong Lee; Chang-Ik Ko; Ginnae Ahn; SangGuan You; Jin-Soo Kim; Min Soo Heu; Jae-Il Kim; Youngheun Jee; You-Jin Jeon

Enzymatic extraction has been successfully used for extracting numerous biologically active compounds from a wide variety of seaweeds. In this study, we found that enzymatic extraction of the fucoidan from Ecklonia cava may be more advantageous than water extraction. Therefore, we studied the E. cava fucoidans extracted by the enzymatic extraction technique and used ion-exchange chromatography to determine their molecular characteristics and anti-inflammatory activities. The crude and fractionated fucoidans (F1, F2, and F3) consisted mostly of carbohydrates (47.1-57.1%), uronic acids (9.0-15.8%), and sulfates (16.5-39.1%), as well as varying levels of proteins (1.3-8.7%). The monosaccharide levels significantly differed, and the composition included fucose (53.1-77.9%) and galactose (10.1-32.8%), with a small amount of rhamnose (2.3-4.5%), xylose (4.0-8.2%), and glucose (0.8-2.2%). These fucoidans contained one or two subfractions with an average molecular weight (Mw) ranging from 18 to 359×10(3)g/mol. These fucoidans significantly inhibited NO production in lipopolysaccharide (LPS)-induced Raw 264.7 macrophage cells by down-regulating the expression of iNOS, COX-2, and pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β. Thus, the present results suggest that E. cava fucoidan may be a potentially useful therapeutic approach for various inflammatory diseases.


Neuroscience Letters | 2000

Induction of heme oxygenase-1 in the brains of scrapie-infected mice

Yeong-Gon Choi; Jae-Il Kim; Hyun-Pil Lee; Jae-Kwang Jin; Eun-Kyoung Choi; Richard I. Carp; Yong-Sun Kim

Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes the rate-limiting step in the degradation of heme to biliverdin, carbon monoxide and iron, and its expression can be used as a marker for oxidative stress. Oxidative stress has been reported to be associated with neurodegenerative diseases including Alzheimers disease. It is possible that oxidative stress is also involved in the disease process seen in scrapie, the archetype transmissible spongiform encephalopathy. In this study, we report that HO-1 is significantly increased in the scrapie-infected group compared to an age-matched control group. Immunohistochemistry showed a pronounced increase of immunostaining of this protein in the infected group compared to the minimal amount of staining in the control group. These results support that oxidative stress is closely associated with the pathogenesis of scrapie and that it might contribute to neurodegeneration in this disease.


Journal of Agricultural and Food Chemistry | 2012

Anti-inflammatory Activities of an Ethanol Extract of Ecklonia stolonifera in Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cells

Min-Sup Lee; Misung Kwon; Ji-Woong Choi; Tai-Sun Shin; Hong Kyoon No; Jae-Sue Choi; Dae-Seok Byun; Jae-Il Kim; Hyeung-Rak Kim

Ecklonia stolonifera is a brown alga that was shown to have antioxidant, anti-inflammatory, tyrosinase inhibitory, and chemopreventive activities. However, the molecular mechanisms underlying its anti-inflammatory activity remain unclear. In this study, we investigated the molecular mechanism of the anti-inflammatory action of E. stolonifera ethanolic extracts (ESE) using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ESE inhibited LPS-induced nitric oxide (IC(50) = 72 ± 1.9 μg/mL) and prostaglandin E(2) (IC(50) = 98 ± 5.3 μg/mL) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. ESE also reduced the production of pro-inflammatory cytokines in LPS-stimulated RAW 264.7 cells. LPS-induced nuclear factor-κB (NF-κB) transcriptional activity and NF-κB translocation into the nucleus were significantly inhibited by ESE treatment through the prevention of the degradation of inhibitor κB-α. Moreover, ESE inhibited the activation of Akt, ERK, JNK1/2, and p38 MAPK in LPS-stimulated RAW 264.7 cells. The main components with anti-inflammatory activity in ESE were identified as phlorofucofuroeckol A and B based on the inhibition of NO production. Our results indicate that ESE can be considered as a potential source of therapeutic agents for inflammatory diseases.


Food Chemistry | 2014

Preparative isolation and purification of phlorotannins from Ecklonia cava using centrifugal partition chromatography by one-step.

Ji-Hyeok Lee; Ju-Young Ko; Jae-Young Oh; Chul-Young Kim; Hee-Ju Lee; Jae-Il Kim; You-Jin Jeon

Various bioactive phlorotannins of Ecklonia cava (e.g., dieckol, eckol, 6,6-bieckol, phloroglucinol, phloroeckol, and phlorofucofuroeckol-A) are reported. However, their isolation and purification are not easy. Centrifugal partition chromatography (CPC) can be used to efficiently purify the various bioactive-compounds efficiently from E. cava. Phlorotannins are successfully isolated from the ethyl acetate (EtOAc) fraction of E. cava by CPC with a two-phase solvent system comprising n-hexane:EtOAc:methanol:water (2:7:3:7, v/v) solution. The dieckol (fraction I, 40.2mg), phlorofucofuroeckol-A (fraction III, 31.1mg), and fraction II (34.1mg) with 2,7-phloroglucinol-6,6-bieckol and pyrogallol-phloroglucinol-6,6-bieckol are isolated from the crude extract (500 mg) by a one-step CPC system. The purities of the isolated dieckol and phlorofucofuroeckol-A are ⩾90% according to high performance liquid chromatography (HPLC) and electrospray ionization multi stage tandem mass spectrometry analyses. The purified 2,7-phloroglucinol-6,6-bieckol and pyrogallol-phloroglucinol-6,6-bieckol are collected from fraction II by recycle-HPLC. Thus, the CPC system is useful for easy and simple isolation of phlorotannins from E. cava.


Biochemical Journal | 2012

Peptidylarginine deiminase modulates the physiological roles of enolase via citrullination: links between altered multifunction of enolase and neurodegenerative diseases

Byungki Jang; Yong-Chul Jeon; Jin-Kyu Choi; Mira Park; Jae-Il Kim; Akihito Ishigami; Naoki Maruyama; Richard I. Carp; Yong-Sun Kim; Eun-Kyoung Choi

The citrullination of enolase by PAD (peptidylarginine deiminase) has emerged as an important post-translational modification in human disorders; however, the physiological function of citrullination remains unknown. In the present study, we report that citrullination diversely regulates the biological functions of ENO1 (α-enolase) and NSE (neuron-specific enolase). We developed three mouse IgG1 monoclonal antibodies with specificity to the following: (i) citrullination of Arg9 of ENO1 [ENO1Cit9; anti-CE1 (citrullinated enolase 1) antibody]; (ii) citrullination of Arg9 in ENO1 and NSE (ENO1Cit9/NSECit9; anti-CE1/2 antibody); and (iii) citrullination of Arg429 of NSE (NSECit429; anti-CE2 antibody). Regardless of the total protein expression level, the levels of ENO1Cit9 and NSECit429 were elevated, and their immunoreactivities were also increased in cortical neuronal cells or around blood vessels in the frontal cortex of patients with sporadic Creutzfeldt-Jakob disease and Alzheimers disease compared with controls. In a time- and dose-dependent manner, PAD negatively regulated enolase activity via citrullination, and enolase in diseased patients was more inactive than in controls. Interestingly, the citrullination of enolase effectively promoted its proteolytic degradation by Ca2+-dependent calpain-1, and leupeptin (calpain inhibitor I) abrogated this degradation. Surprisingly, using an affinity assay, the citrullination of enolase enhanced its plasminogen-binding affinity, which was blocked by the lysine analogue ϵ-aminocaproic acid. These findings suggest that PAD-mediated citrullination regulates the diverse physiological activities of enolase and that CE may be a candidate diagnostic/prognostic factor for degenerative diseases.


Inflammation | 2013

Phlorofucofuroeckol A Suppresses Expression of Inducible Nitric Oxide Synthase, Cyclooxygenase-2, and Pro-inflammatory Cytokines via Inhibition of Nuclear Factor-κB, c-Jun NH2-Terminal Kinases, and Akt in Microglial Cells

A-Reum Kim; Min-Sup Lee; Ji-Woong Choi; Tadanobu Utsuki; Jae-Il Kim; Byeong-Churl Jang; Hyeung-Rak Kim

Microglial activation has been implicated in many neurological disorders for its inflammatory and neurotrophic effects. In this study, we investigated the effects of phlorofucofuroeckol A isolated from Ecklonia stolonifera Okamura on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated microglia. Pre-treatment of phlorofucofuroeckol A attenuated the productions of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in LPS-stimulated microglia. Profoundly, phlorofucofuroeckol A treatment showed inactivation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α and the nuclear translocation of p65 NF-κB subunit. Moreover, phlorofucofuroeckol A inhibited the activation of c-Jun NH2-terminal kinases (JNKs), p38 mitogen-activated protein kinase (MAPK), and Akt, but not that of extracellular signal-regulated kinase. These results indicate that phlorofucofuroeckol A inhibits the LPS-induced expression of inflammatory mediators through inactivation of NF-κB, JNKs, p38 MAPK, and Akt pathways. These findings suggest that phlorofucofuroeckol A can be considered as a nutraceutical candidate for the treatment of neuroinflammation in neurodegenerative diseases.


European Journal of Nutrition | 2013

Hexane fraction from Laminaria japonica exerts anti-inflammatory effects on lipopolysaccharide-stimulated RAW 264.7 macrophages via inhibiting NF-kappaB pathway.

Ji-Young Lee; Min-Sup Lee; Hee-Jeon Choi; Ji-Woong Choi; Tai-Sun Shin; Hee-Chul Woo; Jae-Il Kim; Hyeung-Rak Kim

PurposeLaminaria japonica is a representative marine brown alga used as a culinary item in East Asia. L. japonica extract was shown to exert various biological activities; however, its anti-inflammatory activity has not been reported. The aim of this study is to investigate the molecular mechanisms underlying its anti-inflammatory action.MethodsAnti-inflammatory mechanisms of L. japonican-hexane fraction (LHF) were assessed using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. An anti-inflammatory compound isolated from LHF by reverse-phase chromatography was identified using nuclear magnetic resonance (NMR) spectroscopy.ResultsOur results indicate that LHF significantly inhibited LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) secretion in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) with no cytotoxicity. As results, levels of pro-inflammatory cytokines were significantly reduced by pretreatment of LHF in LPS-stimulated RAW 264.7 cells. Treatment of LHF strongly suppressed nuclear factor-κB (NF-κB) promoter-driven expression and nuclear translocation of NF-κB by preventing proteolytic degradation of inhibitor of κB (IκB)-α in LPS-stimulated RAW 264.7 cells. Moreover, LHF inhibited the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. One of the anti-inflammatory compounds was isolated from LHF and identified as fucoxanthin.ConclusionsThese results indicate that the LHF-mediated inhibition of NO and PGE2 secretion in LPS-stimulated macrophages is regulated by NF-κB inactivation through inhibition of IκB-α, MAPKs, and Akt phosphorylation. LHF may be considered as a functional food candidate for the prevention or treatment of inflammatory diseases.


BMC Complementary and Alternative Medicine | 2012

Anti-inflammatory effect of ethanolic extract from Myagropsis myagroides on murine macrophages and mouse ear edema

Eun-Ji Joung; Min-Sup Lee; Ji-Woong Choi; Jong-Soon Kim; Tai-Sun Shin; Bok-Mi Jung; Na Young Yoon; Chi-Won Lim; Jae-Il Kim; Hyeung-Rak Kim

BackgroundThis study aims to investigate anti-inflammatory effect of ethanolic extract of Myagropsis myagroides (EMM) in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and the phorbol 12-myristate 13-acetate (PMA)-induced ear edema in mice, and to clarify its underlying molecular mechanisms.MethodsThe levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunosorbent assay. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blotting. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunocytochemistry and reporter gene assay, respectively. PMA-induced mouse ear edema was used as the animal model of inflammation. Anti-inflammatory compounds in EMM were isolated using high-performance liquid chromatography and identified by nuclear magnetic resonance.ResultsEMM significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines in a dose-dependent manner and suppressed the expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. EMM strongly suppressed nuclear translocation of NF-κB by preventing degradation of inhibitor of κB-α as well as by inhibiting phosphorylation of Akt and MAPKs. EMM reduced ear edema in PMA-induced mice. One of the anti-inflammatory compounds in EMM was identified as 6,6’-bieckol.ConclusionsThese results suggest that the anti-inflammatory properties of EMM are associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines through the inhibition of NF-κB pathway in LPS-stimulated macrophages.

Collaboration


Dive into the Jae-Il Kim's collaboration.

Top Co-Authors

Avatar

Hyeung-Rak Kim

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar

Min-Sup Lee

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

You-Jin Jeon

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Ji-Woong Choi

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar

Min-Woo Choi

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae-Sue Choi

Pukyong National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge