Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae K. Lee is active.

Publication


Featured researches published by Jae K. Lee.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract

Murray G. Blackmore; Zimei Wang; Jessica K. Lerch; Dario Motti; Yi Ping Zhang; Christopher B. Shields; Jae K. Lee; Jeffrey L. Goldberg; Vance Lemmon; John L. Bixby

Axon regeneration in the central nervous system normally fails, in part because of a developmental decline in the intrinsic ability of CNS projection neurons to extend axons. Members of the KLF family of transcription factors regulate regenerative potential in developing CNS neurons. Expression of one family member, KLF7, is down-regulated developmentally, and overexpression of KLF7 in cortical neurons in vitro promotes axonal growth. To circumvent difficulties in achieving high neuronal expression of exogenous KLF7, we created a chimera with the VP16 transactivation domain, which displayed enhanced neuronal expression compared with the native protein while maintaining transcriptional activation and growth promotion in vitro. Overexpression of VP16-KLF7 overcame the developmental loss of regenerative ability in cortical slice cultures. Adult corticospinal tract (CST) neurons failed to up-regulate KLF7 in response to axon injury, and overexpression of VP16-KLF7 in vivo promoted both sprouting and regenerative axon growth in the CST of adult mice. These findings identify a unique means of promoting CST axon regeneration in vivo by reengineering a developmentally down-regulated, growth-promoting transcription factor.


Neurobiology of Disease | 2015

Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury

Y. Zhu; C. Soderblom; V. Krishnan; J. Ashbaugh; John R. Bethea; Jae K. Lee

Spinal cord injury (SCI) leads to formation of a fibrotic scar that is inhibitory to axon regeneration. Recent evidence indicates that the fibrotic scar is formed by perivascular fibroblasts, but the mechanism by which they are recruited to the injury site is unknown. Using bone marrow transplantation in mouse model of spinal cord injury, we show that fibroblasts in the fibrotic scar are associated with hematogenous macrophages rather than microglia, which are limited to the surrounding astroglial scar. Depletion of hematogenous macrophages results in reduced fibroblast density and basal lamina formation that is associated with increased axonal growth in the fibrotic scar. Cytokine gene expression analysis after macrophage depletion indicates that decreased Tnfsf8, Tnfsf13 (tumor necrosis factor superfamily members) and increased BMP1-7 (bone morphogenetic proteins) expression may serve as anti-fibrotic mechanisms. Our study demonstrates that hematogenous macrophages are necessary for fibrotic scar formation and macrophage depletion results in changes in multiple cytokines that make the injury site less fibrotic and more conducive to axonal growth.


Neuroscience Bulletin | 2013

Animal models of axon regeneration after spinal cord injury.

Do Hun Lee; Jae K. Lee

With advances in genetic and imaging techniques, investigating axon regeneration after spinal cord injury in vivo is becoming more common in the literature. However, there are many issues to consider when using animal models of axon regeneration, including species, strains and injury models. No single particular model suits all types of experiments and each hypothesis being tested requires careful selection of the appropriate animal model. in this review, we describe several commonly-used animal models of axon regeneration in the spinal cord and discuss their advantages and disadvantages.


Cell Reports | 2016

Enhanced Transcriptional Activity and Mitochondrial Localization of STAT3 Co-induce Axon Regrowth in the Adult Central Nervous System

Xueting Luo; Márcio Ribeiro; Eric R. Bray; Do Hun Lee; Benjamin J. Yungher; Saloni T. Mehta; Kinjal Thakor; Francisca Diaz; Jae K. Lee; Carlos T. Moraes; John L. Bixby; Vance Lemmon; Kevin K. Park

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor central to axon regrowth with an enigmatic ability to act in different subcellular regions independently of its transcriptional roles. However, its roles in mature CNS neurons remain unclear. Here, we show that along with nuclear translocation, STAT3 translocates to mitochondria in mature CNS neurons upon cytokine stimulation. Loss- and gain-of-function studies using knockout mice and viral expression of various STAT3 mutants demonstrate that STAT3s transcriptional function is indispensable for CNS axon regrowth, whereas mitochondrial STAT3 enhances bioenergetics and further potentiates regrowth. STAT3s localization, functions, and growth-promoting effects are regulated by mitogen-activated protein kinase kinase (MEK), an effect further enhanced by Pten deletion, leading to extensive axon regrowth in the mouse optic pathway and spinal cord. These results highlight CNS neuronal dependence on STAT3 transcriptional activity, with mitochondrial STAT3 providing ancillary roles, and illustrate a critical contribution for MEK in enhancing diverse STAT3 functions and axon regrowth.


eneuro | 2015

3D Imaging of Axons in Transparent Spinal Cords from Rodents and Nonhuman Primates

Cynthia Soderblom; Do Hun Lee; Abdul Dawood; Melissa M. Carballosa; Andrea J. Santamaria; Francisco D. Benavides; Stanislava Jergova; Robert M. Grumbles; Christine K. Thomas; Kevin K. Park; James D. Guest; Vance Lemmon; Jae K. Lee; Pantelis Tsoulfas

Recent advances in tissue clearing techniques have provided a promising method of visualizing axonal trajectories with unprecedented accuracy and speed. While previous studies have utilized transgenic labeling in mice, the use of virus or chemical neuronal tracers will provide additional spatiotemporal control as well as the ability to use animal models in which transgenic axonal labeling is not available. Abstract The histological assessment of spinal cord tissue in three dimensions has previously been very time consuming and prone to errors of interpretation. Advances in tissue clearing have significantly improved visualization of fluorescently labelled axons. While recent proof-of-concept studies have been performed with transgenic mice in which axons were prelabeled with GFP, investigating axonal regeneration requires stringent axonal tracing methods as well as the use of animal models in which transgenic axonal labeling is not available. Using rodent models of spinal cord injury, we labeled axon tracts of interest using both adeno-associated virus and chemical tracers and performed tetrahydrofuran-based tissue clearing to image multiple axon types in spinal cords using light sheet and confocal microscopy. Using this approach, we investigated the relationships between axons and scar-forming cells at the injury site as well as connections between sensory axons and motor pools in the spinal cord. In addition, we used these methods to trace axons in nonhuman primates. This reproducible and adaptable virus-based approach can be combined with transgenic mice or with chemical-based tract-tracing methods, providing scientists with flexibility in obtaining axonal trajectory information from transparent tissue.


Journal of Neurotrauma | 2015

Fibronectin Matrix Assembly after Spinal Cord Injury

Yunjiao Zhu; Cynthia Soderblom; Michelle Trojanowsky; Do Hun Lee; Jae K. Lee

After spinal cord injury (SCI), a fibrotic scar forms at the injury site that is best characterized by the accumulation of perivascular fibroblasts and deposition of the extracellular matrix protein fibronectin. While fibronectin is a growth-permissive substrate for axons, the fibrotic scar is inhibitory to axon regeneration. The mechanism behind how fibronectin contributes to the inhibitory environment and how the fibronectin matrix is assembled in the fibrotic scar is unknown. By deleting fibronectin in myeloid cells, we demonstrate that fibroblasts are most likely the major source of fibronectin in the fibrotic scar. In addition, we demonstrate that fibronectin is initially present in a soluble form and is assembled into a matrix at 7u2009d post-SCI. Assembly of the fibronectin matrix may be mediated by the canonical fibronectin receptor, integrin α5β1, which is primarily expressed by activated macrophages/microglia in the fibrotic scar. Despite the pronounced cavitation after rat SCI, fibrotic scar also is observed in a rat SCI model, which is considered to be more similar to human pathology. Taken together, our study provides insight into the mechanism of fibrotic scar formation after spinal cord injury.


Neurobiology of Disease | 2016

STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury.

Amber R. Hackett; Do Hun Lee; Abdul Dawood; Mario Rodriguez; Lucy H. Funk; Pantelis Tsoulfas; Jae K. Lee

NG2 cells, also known as oligodendrocyte progenitors or polydendrocytes, are a major component of the glial scar that forms after spinal cord injury. NG2 cells react to injury by proliferating around the lesion site and differentiating into oligodendrocytes and astrocytes, but the molecular mechanism is poorly understood. In this study, we tested the role of the transcription factor STAT3, and its suppressor SOCS3, in NG2 cell proliferation and differentiation after spinal cord injury. Using knockout mice in which STAT3 or SOCS3 are genetically deleted specifically in NG2 cells, we found that deletion of STAT3 led to a reduction in oligodendrogenesis, while deletion of SOCS3 led to enhanced proliferation of NG2 cells within the glial scar after spinal cord injury. Additionally, STAT3 and SOCS3 were not required for astrogliogenesis from NG2 cells after spinal cord injury. Interestingly, genetic deletion of STAT3 and SOCS3 did not have opposing effects, suggesting that SOCS3 may have targets other than the STAT3 pathway in NG2 cells after spinal cord injury. Altogether, our data show that both STAT3 and SOCS3 play important, yet unexpected, roles in NG2 cell proliferation and differentiation after spinal cord injury.


ACS Chemical Biology | 2015

Rational Polypharmacology: Systematically Identifying and Engaging Multiple Drug Targets To Promote Axon Growth

Hassan Al-Ali; Do Hun Lee; Matt C. Danzi; Houssam Nassif; Prson Gautam; Krister Wennerberg; Bill Zuercher; David H. Drewry; Jae K. Lee; Vance Lemmon; John L. Bixby

Mammalian central nervous system (CNS) neurons regrow their axons poorly following injury, resulting in irreversible functional losses. Identifying therapeutics that encourage CNS axon repair has been difficult, in part because multiple etiologies underlie this regenerative failure. This suggests a particular need for drugs that engage multiple molecular targets. Although multitarget drugs are generally more effective than highly selective alternatives, we lack systematic methods for discovering such drugs. Target-based screening is an efficient technique for identifying potent modulators of individual targets. In contrast, phenotypic screening can identify drugs with multiple targets; however, these targets remain unknown. To address this gap, we combined the two drug discovery approaches using machine learning and information theory. We screened compounds in a phenotypic assay with primary CNS neurons and also in a panel of kinase enzyme assays. We used learning algorithms to relate the compounds kinase inhibition profiles to their influence on neurite outgrowth. This allowed us to identify kinases that may serve as targets for promoting neurite outgrowth as well as others whose targeting should be avoided. We found that compounds that inhibit multiple targets (polypharmacology) promote robust neurite outgrowth in vitro. One compound with exemplary polypharmacology was found to promote axon growth in a rodent spinal cord injury model. A more general applicability of our approach is suggested by its ability to deconvolve known targets for a breast cancer cell line as well as targets recently shown to mediate drug resistance.


The Journal of Neuroscience | 2014

Mammalian Target of Rapamycin's Distinct Roles and Effectiveness in Promoting Compensatory Axonal Sprouting in the Injured CNS

Do Hun Lee; Xueting Luo; Benjamin J. Yungher; Eric R. Bray; Jae K. Lee; Kevin K. Park

Mammalian target of rapamycin (mTOR) functions as a master sensor of nutrients and energy, and controls protein translation and cell growth. Deletion of phosphatase and tensin homolog (PTEN) in adult CNS neurons promotes regeneration of injured axons in an mTOR-dependent manner. However, others have demonstrated mTOR-independent axon regeneration in different cell types, raising the question of how broadly mTOR regulates axonal regrowth across different systems. Here we define the role of mTOR in promoting collateral sprouting of spared axons, a key axonal remodeling mechanism by which functions are recovered after CNS injury. Using pharmacological inhibition, we demonstrate that mTOR is dispensable for the robust spontaneous sprouting of corticospinal tract axons seen after pyramidotomy in postnatal mice. In contrast, moderate spontaneous axonal sprouting and induced-sprouting seen under different conditions in young adult mice (i.e., PTEN deletion or degradation of chondroitin proteoglycans; CSPGs) are both reduced upon mTOR inhibition. In addition, to further determine the potency of mTOR in promoting sprouting responses, we coinactivate PTEN and CSPGs, and demonstrate that this combination leads to an additive increase in axonal sprouting compared with single treatments. Our findings reveal a developmental switch in mTOR dependency for inducing axonal sprouting, and indicate that PTEN deletion in adult neurons neither recapitulates the regrowth program of postnatal animals, nor is sufficient to completely overcome an inhibitory environment. Accordingly, exploiting mTOR levels by targeting PTEN combined with CSPG degradation represents a promising strategy to promote extensive axonal plasticity in adult mammals.


Frontiers in Neurology | 2016

Understanding the NG2 Glial Scar after Spinal Cord Injury

Amber R. Hackett; Jae K. Lee

NG2 cells, also known as oligodendrocyte progenitor cells, are located throughout the central nervous system and serve as a pool of progenitors to differentiate into oligodendrocytes. In response to spinal cord injury (SCI), NG2 cells increase their proliferation and differentiation into remyelinating oligodendrocytes. While astrocytes are typically associated with being the major cell type in the glial scar, many NG2 cells also accumulate within the glial scar but their function remains poorly understood. Similar to astrocytes, these cells hypertrophy, upregulate expression of chondroitin sulfate proteoglycans, inhibit axon regeneration, contribute to the glial-fibrotic scar border, and some even differentiate into astrocytes. Whether NG2 cells also have a role in other astrocyte functions, such as preventing the spread of infiltrating leukocytes and expression of inflammatory cytokines, is not yet known. Thus, NG2 cells are not only important for remyelination after SCI but are also a major component of the glial scar with functions that overlap with astrocytes in this region. In this review, we describe the signaling pathways important for the proliferation and differentiation of NG2 cells, as well as the role of NG2 cells in scar formation and tissue repair.

Collaboration


Dive into the Jae K. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge