Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae Myun Lee is active.

Publication


Featured researches published by Jae Myun Lee.


Cancer Research | 2009

Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation.

Kyung-Chul Choi; Myung Gu Jung; Yoo-Hyun Lee; Joo Chun Yoon; Seung Hyun Kwon; Hee-Bum Kang; Mi-Jeong Kim; Jeong-Heon Cha; Young Jun Kim; Woo Jin Jun; Jae Myun Lee; Ho-Geun Yoon

Because the p300/CBP-mediated hyperacetylation of RelA (p65) is critical for nuclear factor-kappaB (NF-kappaB) activation, the attenuation of p65 acetylation is a potential molecular target for the prevention of chronic inflammation. During our ongoing screening study to identify natural compounds with histone acetyltransferase inhibitor (HATi) activity, we identified epigallocatechin-3-gallate (EGCG) as a novel HATi with global specificity for the majority of HAT enzymes but with no activity toward epigenetic enzymes including HDAC, SIRT1, and HMTase. At a dose of 100 micromol/L, EGCG abrogates p300-induced p65 acetylation in vitro and in vivo, increases the level of cytosolic IkappaBalpha, and suppresses tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. We also showed that EGCG prevents TNFalpha-induced p65 translocation to the nucleus, confirming that hyperacetylation is critical for NF-kappaB translocation as well as activity. Furthermore, EGCG treatment inhibited the acetylation of p65 and the expression of NF-kappaB target genes in response to diverse stimuli. Finally, EGCG reduced the binding of p300 to the promoter region of interleukin-6 gene with an increased recruitment of HDAC3, which highlights the importance of the balance between HATs and histone deacetylases in the NF-kappaB-mediated inflammatory signaling pathway. Importantly, EGCG at 50 micromol/L dose completely blocks EBV infection-induced cytokine expression and subsequently the EBV-induced B lymphocyte transformation. These results show the crucial role of acetylation in the development of inflammatory-related diseases.


Journal of Virology | 2007

Manipulation of the Toll-Like Receptor 7 Signaling Pathway by Epstein-Barr Virus

Heather J. Martin; Jae Myun Lee; Dermot Walls; S. Diane Hayward

ABSTRACT Epstein-Barr virus (EBV) infection of primary B cells causes B-cell activation and proliferation. Activation of B cells requires binding of antigen to the B-cell receptor and a survival signal from ligand-bound CD40, signals that are provided by the EBV LMP1 and LMP2A latency proteins. Recently, Toll-like receptor (TLR) signaling has been reported to provide a third B-cell activation stimulus. The interaction between the EBV and TLR pathways was therefore investigated. Both UV-inactivated and untreated EBV upregulated the expression of TLR7 and downregulated the expression of TLR9 in naive B cells. UV-inactivated virus transiently stimulated naive B-cell proliferation in the presence of the TLR7 ligand R837, while addition of the TLR7 antagonist IRS 661 impaired cell growth induced by untreated EBV. Interferon regulatory factor 5 (IRF-5) is a downstream mediator of TLR7 signaling. IRF-5 was induced following EBV infection, and IRF-5 was expressed in B-cell lines with type III latency. Expression of IRF-5 in this setting is surprising since IRF-5 has tumor suppressor and antiviral properties. B-cell proliferation assays provided evidence that EBV modulates TLR7 signaling responses. Examination of IRF-5 transcripts identified a novel splice variant, V12, that was induced by EBV infection, was constitutively nuclear, and acted as a dominant negative form in IRF-5 reporter assays. IRF-4 negatively regulates IRF-5 activation, and IRF-4 was also present in type III latently infected cells. EBV therefore initially uses TLR7 signaling to enhance B-cell proliferation and subsequently modifies the pathway to regulate IRF-5 activity.


Molecular Cancer Research | 2009

Gallic Acid Suppresses Lipopolysaccharide-Induced Nuclear Factor-κB Signaling by Preventing RelA Acetylation in A549 Lung Cancer Cells

Kyung-Chul Choi; Yoo-Hyun Lee; Myung Gu Jung; Seung Hyun Kwon; Mi-Jeong Kim; Woo Jin Jun; Jeongmin Lee; Jae Myun Lee; Ho-Geun Yoon

Although multiple studies have revealed that gallic acid plays an important role in the inhibition of malignant transformation, cancer development, and inflammation, the molecular mechanism of gallic acid in inflammatory diseases is still unclear. In this study, we identified gallic acid from Rosa rugosa as a histone acetyltransferase (HAT) inhibitor with global specificity for the majority of HAT enzymes, but with no activity toward epigenetic enzymes including sirtuin (silent mating type information regulation 2 homologue) 1 (S. cerevisiae), histone deacetylase, and histone methyltransferase. Enzyme kinetic studies indicated that gallic acid uncompetitively inhibits p300/CBP-dependent HAT activities. We found that gallic acid inhibits p300-induced p65 acetylation, both in vitro and in vivo, increases the level of cytosolic IκBα, prevents lipopolysaccharide (LPS)-induced p65 translocation to the nucleus, and suppresses LPS-induced nuclear factor-κB activation in A549 lung cancer cells. We have also shown that gallic acid treatment inhibits the acetylation of p65 and the LPS-induced serum levels of interleukin-6 in vivo. Importantly, gallic acid generally inhibited inflammatory responses caused by other stimuli, including LPS, IFN-γ, and interleukin-1β, and further downregulated the expression of nuclear factor-κB–regulated antiapoptotic genes. These results show the crucial role of acetylation in the development of inflammatory diseases. (Mol Cancer Res 2009;7(12):2011–21)


Proceedings of the National Academy of Sciences of the United States of America | 2002

Epstein–Barr virus EBNA2 blocks Nur77- mediated apoptosis

Jae Myun Lee; Kyoung Ho Lee; Magdalena Weidner; Barbara A. Osborne; S. Diane Hayward

Epstein–Barr virus infection in vitro immortalizes primary B cells. EBNA2 is an Epstein–Barr virus-encoded transcriptional transactivator that mimics the effects of activated Notch signaling and is essential for this proliferative response. An assay using Sindbis virus (SV) as a cell death inducer revealed that, like Notch, EBNA2 also has antiapoptotic activity. We show that Nur77 is a mediator of SV-induced cell death and that EBNA2 antiapoptotic activity results from interaction with Nur77. EBNA2 colocalized with Nur77 in transfected cells and coprecipitated with Nur77 in IB4 B cells. EBNA2 binds to Nur77 through sequences in the EBNA2 amino acid 123–147 conserved domain and an EBNA2 mutant unable to bind Nur77 also lost the ability to protect cells from SV-induced apoptosis. EBNA2 exerted its antideath function by retaining Nur77 in the nucleus and preventing Nur77 from targeting mitochondria in response to apoptotic stimuli. Thus, targeting of Nur77 can be added to the list of strategies used by viruses to counter apoptosis.


European Journal of Nuclear Medicine and Molecular Imaging | 2004

Analysis of gene expression profiles of hepatocellular carcinomas with regard to 18F-fluorodeoxyglucose uptake pattern on positron emission tomography

Jong Doo Lee; Mijin Yun; Jae Myun Lee; Youjeong Choi; Youn Hee Choi; Ji Su Kim; Se Jong Kim; Kyung Sik Kim; Woo Ick Yang; Young Nyun Park; Kwang Hyub Han; Woo Jung Lee; Naechun Yoo; Sang Moo Lim; Jeon Han Park

Purpose18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) scan has been found to reflect tumour aggressiveness and prognosis in various types of cancer. In this study, the gene expression profiles of hepatocellular carcinomas (HCCs) were evaluated to determine whether HCCs with high 18F-FDG uptake have more aggressive biological potential than those with low uptake.MethodsSurgical specimens were obtained from ten patients with HCC (six males and four females, age range 38–68 years). The tumour samples were divided into two groups based on the 18F-FDG PET scan findings: high 18F-FDG uptake (n=4) and low 18F-FDG uptake (n=6).ResultsThe pathological tumour grade was closely correlated with the 18F-FDG uptake pattern: HCCs with high 18F-FDG uptake were pathologically Edmondson-Steiner grade III, while those with low uptake were either grade II or grade II with a focal area of grade III. The total RNA was extracted from the frozen tissues of all HCCs (n=10) and adjacent non-cancerous tissue (n=7). The gene expression profiles were evaluated using an oligoDNA microarray. The HCCs with high 18F-FDG uptake showed increased expression of 11 genes—including vascular cell adhesion molecule-1, vinexin beta and core 1 UDP-galactose:N-acetylgalactosamine-alpha-R-beta 1,3-galactosyltransferase and the natural killer cell inhibitory receptor—compared to those with low uptake (p<0.005). Nine genes, including regulator of mitotic spindle assembly 1, grb2-related adaptor protein and beta-1,3-n-acetylglucosaminyltransferase, were repressed.ConclusionGene expression is closely related to cell survival, cell-to-cell adhesion or cell spreading; therefore, HCCs with high 18F-FDG uptake appear to have more aggressive biological properties than those with low uptake.


Journal of Bioenergetics and Biomembranes | 2008

Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells : ROS-mediated cell death by 3-BrPA

Ji Su Kim; Keun Jae Ahn; Jeong-Ah Kim; Hyemi Kim; Jong Doo Lee; Jae Myun Lee; Se Jong Kim; Jeon Han Park

Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-l-cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.


Journal of Virology | 2004

EBNA2 Is Required for Protection of Latently Epstein-Barr Virus-Infected B Cells against Specific Apoptotic Stimuli

Jae Myun Lee; Kyoung-Ho Lee; Christopher J. Farrell; Paul D. Ling; Bettina Kempkes; Jeon Han Park; S. Diane Hayward

ABSTRACT In addition to functioning as a transcriptional transactivator, Epstein-Barr virus EBNA2 interacts with Nur77 to protect against Nur77-mediated apoptosis. Estrogen-regulated EBNA2 in EREB2-5 cells was replaced by either EBNA2 or EBNA2 with a deletion of conserved region 4 (EBNA2ΔCR4). Both EBNA2-converted and EBNA2ΔCR4-converted EREB2-5 cells grew in the absence of estrogen and expressed LMP1. Treatment with tumor necrosis factor alpha did not induce apoptosis of EBNA2- or EBNA2ΔCR4-expressing cells, but EBNA2ΔCR4 cells were susceptible to etoposide and 5-fluorouracil, Nur77-mediated inducers of apoptosis. Thus, EBNA2 protects B cells against specific apoptotic agents against which LMP1 is not effective.


Pharmaceutical Research | 2005

Stabilizing peptide fusion for solving the stability and solubility problems of therapeutic proteins

Eui Nam Lee; Young Mok Kim; Hye Ja Lee; Sang Woo Park; Han Young Jung; Jae Myun Lee; Yong-Ho Ahn; Jongsun Kim

PurposeProtein aggregation is a major stability problem of therapeutic proteins. We investigated whether a novel stabilizing peptide [acidic tail of synuclein (ATS) peptide] could be generally used to make a more stable and soluble form of therapeutic proteins, particularly those having solubility or aggregation problems.MethodsWe produced ATS fusion proteins by fusing the stabilizing peptide to three representative therapeutic proteins, and then compared the stress-induced aggregation profiles, thermostability, and solubility of them. We also compared the in vivo stability of these ATS fusion proteins by studying their pharmacokinetics in rats.ResultsThe human growth hormone–ATS (hGH–ATS) and granulocyte colony-stimulating factor–ATS (G-CSF–ATS) fusion proteins were fully functional as determined by cell proliferation assay, and the ATS fusion proteins seemed to be very resistant to agitation, freeze/thaw, and heat stresses. The introduction of the ATS peptide significantly increased the storage and thermal stabilities of hGH and G-CSF. The human leptin–ATS fusion protein also seemed to be very resistant to aggregation induced by agitation, freeze/thaw, and heat stresses. Furthermore, the ATS peptide greatly increased the solubility of the fusion proteins. Finally, pharmacokinetic studies in rats revealed that the ATS fusion proteins are also more stable in vivo.ConclusionOur data demonstrate that a more stable and soluble form of therapeutic proteins can be produced by fusing the ATS peptide.


Clinical and Vaccine Immunology | 2011

Impact of Hepatitis B Virus (HBV) X Gene Mutations on Hepatocellular Carcinoma Development in Chronic HBV Infection

Jong Han Lee; Kwang Hyub Han; Jae Myun Lee; Jeon Han Park; Hyon Suk Kim

ABSTRACT The hepatitis B virus (HBV) PreS mutations C1653T, T1753V, and A1762T/G1764A were reported as a strong risk factor of hepatocellular carcinoma (HCC) in a meta-analysis. HBV core promoter overlaps partially with HBx coding sequence, so the nucleotide 1762 and 1764 mutations induce HBV X protein (HBx) 130 and 131 substitutions. We sought to elucidate the impact of HBx mutations on HCC development. Chronically HBV-infected patients were enrolled in this study: 42 chronic hepatitis B (CHB) patients, 23 liver cirrhosis (LC) patients, and 31 HCC patients. Direct sequencing showed HBx131, HBx130, HBx5, HBx94, and HBx38 amino acid mutations were common in HCC patients. Of various mutations, HBx130+HBx131 (double) mutations and HBx5+HBx130+HBx131 (triple) mutations were significantly high in HCC patients. Double and triple mutations increased the risk for HCC by 3.75-fold (95% confidence interval [CI] = 1.101 to 12.768, P = 0.033) and 5.34-fold (95% CI = 1.65 to 17.309, P = 0.005), respectively, when HCC patients were compared to CHB patients. Functionally, there were significantly higher levels of NF-κB activity in cells with the HBx5 mutant and with the double mutants than that of wild-type cells and the triple-mutant cells. The triple mutation did not increase NF-κB activity. Other regulatory pathways seem to exist for NF-κB activation. In conclusion, a specific HBx mutation may contribute to HCC development by activating NF-κB activity. The HBx5 mutation in genotype C2 HBV appears to be a risk factor for the development of HCC and may be used to predict the clinical outcomes of patients with chronic HBV infection.


Journal of Dental Research | 2006

Inhibition of Apoptosis in Early Tooth Development Alters Tooth Shape and Size

J. Kim; Y.-G. Cha; Sung-Won Cho; Muyoung Lee; Jae Myun Lee; Jinglei Cai; Hayato Ohshima; Hyungil Jung

Apoptosis plays important roles in various stages of organogenesis. In this study, we hypothesized that apoptosis would play an important role in tooth morphogenesis. We examined the role of apoptosis in early tooth development by using a caspase inhibitor, z-VAD-fmk, concomitant with in vitro organ culture and tooth germ transplantation into the kidney capsule. Inhibition of apoptosis at the early cap stage did not disrupt the cell proliferation level when compared with controls. However, the macroscopic morphology of mice molar teeth exhibited dramatic alterations after the inhibition of apoptosis. Crown height was reduced, and mesiodistal diameter was increased in a concentration-dependent manner with z-VAD-fmk treatment. Overall, apoptosis in the enamel knot would be necessary for the proper formation of molar teeth, including appropriate shape and size.

Collaboration


Dive into the Jae Myun Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daesub Song

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge