Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae-Seong Yang is active.

Publication


Featured researches published by Jae-Seong Yang.


PLOS ONE | 2011

OASIS: online application for the survival analysis of lifespan assays performed in aging research.

Jae-Seong Yang; Hyun-Jun Nam; Mihwa Seo; Seong Kyu Han; Yonghwan Choi; Hong Gil Nam; Seung-Jae Lee; Sanguk Kim

Background Aging is a fundamental biological process. Characterization of genetic and environmental factors that influence lifespan is a crucial step toward understanding the mechanisms of aging at the organism level. To capture the different effects of genetic and environmental factors on lifespan, appropriate statistical analyses are needed. Methodology/Principal Findings We developed an online application for survival analysis (OASIS) that helps conduct various novel statistical tasks involved in analyzing survival data in a user-friendly manner. OASIS provides standard survival analysis results including Kaplan-Meier estimates and mean/median survival time by taking censored survival data. OASIS also provides various statistical tests including comparison of mean survival time, overall survival curve, and survival rate at specific time point. To visualize survival data, OASIS generates survival and log cumulative hazard plots that enable researchers to easily interpret their experimental results. Furthermore, we provide statistical methods that can analyze variances among survival datasets. In addition, users can analyze proportional effects of risk factors on survival. Conclusions/Significance OASIS provides a platform that is essential to facilitate efficient statistical analyses of survival data in the field of aging research. Web application and a detailed description of algorithms are accessible from http://sbi.postech.ac.kr/oasis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans

Ara B. Hwang; Eun-A Ryu; Murat Artan; Hsin-Wen Chang; Mohammad Humayun Kabir; Hyun-Jun Nam; Dongyeop Lee; Jae-Seong Yang; Sanguk Kim; William Mair; Cheolju Lee; Siu Sylvia Lee; Seung-Jae Lee

Significance Reactive oxygen species (ROS) have long been thought to cause aging and considered to be toxic byproducts generated during mitochondrial respiration. Surprisingly, recent studies show that modestly increased ROS levels lengthen lifespan, at least in the roundworm Caenorhabditis elegans. It was unclear how the levels of potentially toxic ROS are regulated and how ROS promote longevity. Here we demonstrate that ROS activate two proteins, AMP-activated kinase (AMPK) and hypoxia-inducible factor 1 (HIF-1), to promote longevity by increasing immunity. Further, we find that internal ROS levels are reduced by AMPK while being amplified by HIF-1 when animals are stimulated to have higher ROS levels. Thus, balancing ROS at optimal levels appears to be crucial for organismal health and longevity. Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS.


Proteins | 2009

Evolutionary conservation in multiple faces of protein interaction

Yoon Sup Choi; Jae-Seong Yang; Yonghwan Choi; Sung Ho Ryu; Sanguk Kim

Protein interfaces are believed to be evolutionarily more conserved than the rest of the protein surface, but this has not been properly verified using a large protein structural set. Furthermore, recent systematic protein interaction analyses have proved that proteins interacting with many partners have multiple interfaces to connect protein interaction networks, which have never taken into account for conservation analysis of protein interface. Here, we studied the evolutionary conservation of protein interfaces using a large‐scale dataset of 2646 protein interfaces with the classification of homodimeric/heterodimeric and obligatory/transient interactions, considering all their known multiple interfaces. We found that protein interfaces were indeed more conserved than noninterface surfaces, and the conservation level of protein interfaces increased when multiple interfaces were properly considered. These findings suggest that conservation analysis should be a good descriptor for protein interface identification and protein–protein interaction predictions. We applied this evolutionary feature to filter docking decoys and found that protein interface conservation worked remarkably well in selecting the near‐native structures from the large number of generated docking complexes. Moreover, we discovered that a strong correlation exist between protein interface size and protein interface conservation, which could be a useful filter for the prediction of protein–protein interactions. Proteins 2009.


Journal of Proteome Research | 2012

The Protein Interaction Network of Extracellular Vesicles Derived from Human Colorectal Cancer Cells

Dong-Sic Choi; Jae-Seong Yang; Eun-Jeong Choi; Su Chul Jang; Solip Park; Oh Youn Kim; Daehee Hwang; Kwang Pyo Kim; Yoon-Keun Kim; Sanguk Kim; Yong Song Gho

Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.


Molecular Systems Biology | 2014

Protein localization as a principal feature of the etiology and comorbidity of genetic diseases

Solip Park; Jae-Seong Yang; Young-Eun Shin; Juyong Park; Sung Key Jang; Sanguk Kim

Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease‐associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease‐associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression.


PLOS Genetics | 2012

Rewiring of PDZ Domain-Ligand Interaction Network Contributed to Eukaryotic Evolution

Jinho Kim; Inhae Kim; Jae-Seong Yang; Young-Eun Shin; Jihye Hwang; Solip Park; Yoon Sup Choi; Sanguk Kim

PDZ domain-mediated interactions have greatly expanded during metazoan evolution, becoming important for controlling signal flow via the assembly of multiple signaling components. The evolutionary history of PDZ domain-mediated interactions has never been explored at the molecular level. It is of great interest to understand how PDZ domain-ligand interactions emerged and how they become rewired during evolution. Here, we constructed the first human PDZ domain-ligand interaction network (PDZNet) together with binding motif sequences and interaction strengths of ligands. PDZNet includes 1,213 interactions between 97 human PDZ proteins and 591 ligands that connect most PDZ protein-mediated interactions (98%) in a large single network via shared ligands. We examined the rewiring of PDZ domain-ligand interactions throughout eukaryotic evolution by tracing changes in the C-terminal binding motif sequences of the PDZ ligands. We found that interaction rewiring by sequence mutation frequently occurred throughout evolution, largely contributing to the growth of PDZNet. The rewiring of PDZ domain-ligand interactions provided an effective means of functional innovations in nervous system development. Our findings provide empirical evidence for a network evolution model that highlights the rewiring of interactions as a mechanism for the development of new protein functions. PDZNet will be a valuable resource to further characterize the organization of the PDZ domain-mediated signaling proteome.


PLOS ONE | 2010

Changes in Hepatic Gene Expression upon Oral Administration of Taurine-Conjugated Ursodeoxycholic Acid in ob/ob Mice

Jae-Seong Yang; Jin Taek Kim; Jouhyun Jeon; Ho Sun Park; Gyeong Hoon Kang; Kyong Soo Park; Hong Kyu Lee; Sanguk Kim; Young Min Cho

Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and associated with considerable morbidities. Unfortunately, there is no currently available drug established to treat NAFLD. It was recently reported that intraperitoneal administration of taurine-conjugated ursodeoxycholic acid (TUDCA) improved hepatic steatosis in ob/ob mice. We hereby examined the effect of oral TUDCA treatment on hepatic steatosis and associated changes in hepatic gene expression in ob/ob mice. We administered TUDCA to ob/ob mice at a dose of 500 mg/kg twice a day by gastric gavage for 3 weeks. Body weight, glucose homeostasis, endoplasmic reticulum (ER) stress, and hepatic gene expression were examined in comparison with control ob/ob mice and normal littermate C57BL/6J mice. Compared to the control ob/ob mice, TUDCA treated ob/ob mice revealed markedly reduced liver fat stained by oil red O (44.2±5.8% vs. 21.1±10.4%, P<0.05), whereas there was no difference in body weight, oral glucose tolerance, insulin sensitivity, and ER stress. Microarray analysis of hepatic gene expression demonstrated that oral TUDCA treatment mainly decreased the expression of genes involved in de novo lipogenesis among the components of lipid homeostasis. At pathway levels, oral TUDCA altered the genes regulating amino acid, carbohydrate, and drug metabolism in addition to lipid metabolism. In summary, oral TUDCA treatment decreased hepatic steatosis in ob/ob mice by cooperative regulation of multiple metabolic pathways, particularly by reducing the expression of genes known to regulate de novo lipogenesis.


PLOS Computational Biology | 2012

Rational engineering of enzyme allosteric regulation through sequence evolution analysis.

Jae-Seong Yang; Sang Woo Seo; Sungho Jang; Gyoo Yeol Jung; Sanguk Kim

Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.


Comparative and Functional Genomics | 2008

Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order.

Chan-Ki Min; Jae-Seong Yang; Sanguk Kim; Myung-Sik Choi; Ik-Sang Kim; Nam-Hyuk Cho

Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium that belongs to the order of Rickettsiales. Recently, we have reported that O. tsutsugamushi has a unique genomic structure, consisting of highly repetitive sequences, and suggested that it may provide valuable insight into the evolution of intracellular bacteria. Here, we have used genomic information to construct the major metabolic pathways of O. tsutsugamushi and performed a comparative analysis of the metabolic genes and pathways of O. tsutsugamushi with other members of the Rickettsiales order. While O. tsutsugamushi has the largest genome among the members of this order, mainly due to the presence of repeated sequences, its metabolic pathways have been highly streamlined. Overall, the metabolic pathways of O. tsutsugamushi were similar to Rickettsia but there were notable differences in several pathways including carbohydrate metabolism, the TCA cycle, and the synthesis of cell wall components as well as in the transport systems. Our results will provide a useful guide to the postgenomic analysis of O. tsutsugamushi and lead to a better understanding of the virulence and physiology of this intracellular pathogen.


Oncotarget | 2016

OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research.

Seong Kyu Han; Dongyeop Lee; Heetak Lee; Donghyo Kim; Heehwa G. Son; Jae-Seong Yang; Seung-Jae Lee; Sanguk Kim

Online application for survival analysis (OASIS) has served as a popular and convenient platform for the statistical analysis of various survival data, particularly in the field of aging research. With the recent advances in the fields of aging research that deal with complex survival data, we noticed a need for updates to the current version of OASIS. Here, we report OASIS 2 (http://sbi.postech.ac.kr/oasis2), which provides extended statistical tools for survival data and an enhanced user interface. In particular, OASIS 2 enables the statistical comparison of maximal lifespans, which is potentially useful for determining key factors that limit the lifespan of a population. Furthermore, OASIS 2 provides statistical and graphical tools that compare values in different conditions and times. That feature is useful for comparing age-associated changes in physiological activities, which can be used as indicators of “healthspan.” We believe that OASIS 2 will serve as a standard platform for survival analysis with advanced and user-friendly statistical tools for experimental biologists in the field of aging research.

Collaboration


Dive into the Jae-Seong Yang's collaboration.

Top Co-Authors

Avatar

Sanguk Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Gyoo Yeol Jung

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jouhyun Jeon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sang Woo Seo

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Solip Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Inhae Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jinho Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sung Key Jang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoon Sup Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyun-Jun Nam

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge