Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae-Sung Kim is active.

Publication


Featured researches published by Jae-Sung Kim.


Autophagy | 2013

Functions of autophagy in normal and diseased liver

Mark J. Czaja; Wen-Xing Ding; Terrence M. Donohue; Scott L. Friedman; Jae-Sung Kim; Masaaki Komatsu; John J. Lemasters; Antoinette Lemoine; Jiandie D. Lin; Jing Hsiung James Ou; David H. Perlmutter; Glenn Randall; Ratna B. Ray; Allan Tsung; Xiao Ming Yin

Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases.


Hepatology | 2008

Impaired Autophagy: A Mechanism of Mitochondrial Dysfunction in Anoxic Rat Hepatocytes

Jae-Sung Kim; Takashi Nitta; Dagmara Mohuczy; Kerri O'Malley; Lyle L. Moldawer; William A. Dunn; Kevin E. Behrns

Autophagy selectively removes abnormal or damaged organelles such as dysfunctional mitochondria. The mitochondrial permeability transition (MPT) is a marker of impaired mitochondrial function that is evident in hepatic ischemia/reperfusion (I/R) injury. However, the relationship between mitochondrial dysfunction and autophagy in I/R injury is unknown. Cultured rat hepatocytes and mouse livers were exposed to anoxia/reoxygenation (A/R) and I/R, respectively. Expression of autophagy‐related protein 7 (Atg7), Beclin‐1, and Atg12, autophagy regulatory proteins, was analyzed by western blots. Some hepatocytes were incubated with calpain 2 inhibitors or infected with adenoviruses encoding green fluorescent protein (control), Atg7, and Beclin‐1 to augment autophagy. To induce nutrient depletion, a condition stimulating autophagy, hepatocytes were incubated in an amino acid–free and serum‐free medium for 3 hours prior to onset of anoxia. For confocal imaging, hepatocytes were coloaded with calcein and tetramethylrhodamine methyl ester to visualize onset of the MPT and mitochondrial depolarization, respectively. To further examine autophagy, hepatocytes were infected with an adenovirus expressing green fluorescent protein–microtubule‐associated protein light chain 3 (GFP‐LC3) and subjected to A/R. Calpain activity was fluorometrically determined with succinyl‐Leu‐Leu‐Val‐Tyr‐7‐amino‐4‐methylcoumarin. A/R markedly decreased Atg7 and Beclin‐1 concomitantly with a progressive increase in calpain activity. I/R of livers also decreased both proteins. However, inhibition of calpain isoform 2, adenoviral overexpression, and nutrient depletion all substantially suppressed A/R‐induced loss of autophagy proteins, prevented onset of the MPT, and decreased cell death after reoxygenation. Confocal imaging of GFP‐LC3 confirmed A/R‐induced depletion of autophagosomes, which was reversed by nutrient depletion and adenoviral overexpression. Conclusion: Calpain 2–mediated degradation of Atg7 and Beclin‐1 impairs mitochondrial autophagy, and this subsequently leads to MPT‐dependent hepatocyte death after A/R. (HEPATOLOGY 2008.)


Hepatology | 2008

Murine Cirrhosis Induces Hepatocyte Epithelial Mesenchymal Transition and Alterations in Survival Signaling Pathways

Takashi Nitta; Jae-Sung Kim; Dagmara Mohuczy; Kevin E. Behrns

Hepatocytes that reside in a chronically‐injured liver have altered growth responses compared to hepatocytes in normal liver. Transforming growth factor beta (TGFβ) is upregulated in the cirrhotic liver, and cirrhotic hepatocytes, unlike normal hepatocytes exposed to this cytokine, exhibit decreased apoptosis. In fetal hepatocytes, TGFβ also induces epithelial‐mesenchymal transition (EMT) and signaling changes in cell survival pathways. Here, chronic murine liver injury was induced by twice‐weekly carbon tetrachloride administration for 8 weeks. Normal liver‐derived hepatocytes (NLDH) and cirrhotic liver‐derived hepatocytes (CLDH) were examined for EMT and the small mothers against decapentaplegic homolog (Smad), phosphatidylinositol‐3‐kinase (PI3K/Akt), and mitogen activated protein kinase (MAPK) pathways were investigated. Immunofluorescence imaging of cirrhotic livers demonstrated increased vimentin expression, which was confirmed by immunoblot analysis. In vitro, CLDH exhibited increased vimentin and type 1 collagen expression within cellular extensions consistent with EMT. Treatment with TGFβ augmented the EMT response in CLDH. In contrast, untreated NLDH did not display features of EMT but responded to TGFβ with increased vimentin expression and EMT characteristics. In response to PI3K/Akt inhibition, CLDH had decreased basal and insulin‐stimulated p‐Akt expression and decreased apoptosis compared to NLDH. In both NLDH and CLDH, vimentin expression was dependent on PI3K/Akt activity. CLDH demonstrated increased basal p‐extracellular signal‐regulated kinase expression that was independent of Smad and PI3K/Akt signaling. Inhibition of the MAPK pathway produced a marked increase in CLDH apoptosis. Conclusion: CLDH have increased vimentin and type 1 collagen expression and morphologic features consistent with EMT. In addition, compared to NLDH, the cellular signaling phenotype of CLDH changes from a MAPK‐independent pathway to a MAPK‐dependent cell survival pathway. These findings may have clinical implications for chemoprevention of hepatocellular carcinoma in the cirrhotic liver. (HEPATOLOGY 2008.)


Hepatology | 2008

Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury†

Akira Uchiyama; Jae-Sung Kim; Kazuyoshi Kon; Hartmut Jaeschke; Kenichi Ikejima; Sumio Watanabe; John J. Lemasters

Iron overload exacerbates various liver diseases. In hepatocytes, a portion of non‐heme iron is sequestered in lysosomes and endosomes. The precise mechanisms by which lysosomal iron participates in hepatocellular injury remain uncertain. Here, our aim was to determine the role of intracellular movement of chelatable iron in oxidative stress‐induced killing to cultured hepatocytes from C3Heb mice and Sprague‐Dawley rats. Mitochondrial polarization and chelatable iron were visualized by confocal microscopy of tetramethylrhodamine methylester (TMRM) and quenching of calcein, respectively. Cell viability and hydroperoxide formation (a measure of lipid peroxidation) were measured fluorometrically using propidium iodide and chloromethyl dihydrodichlorofluorescein, respectively. After collapse of lysosomal/endosomal acidic pH gradients with bafilomycin (50 nM), an inhibitor of the vacuolar proton‐pumping adenosine triphosphatase, cytosolic calcein fluorescence became quenched. Deferoxamine mesylate and starch‐deferoxamine (1 mM) prevented bafilomycin‐induced calcein quenching, indicating that bafilomycin induced release of chelatable iron from lysosomes/endosomes. Bafilomycin also quenched calcein fluorescence in mitochondria, which was blocked by 20 μM Ru360, an inhibitor of the mitochondrial calcium uniporter, consistent with mitochondrial iron uptake by the uniporter. Bafilomycin alone was not sufficient to induce mitochondrial depolarization and cell killing, but in the presence of low‐dose tert‐butylhydroperoxide (25 μM), bafilomycin enhanced hydroperoxide generation, leading to mitochondrial depolarization and subsequent cell death. Conclusion: Taken together, the results are consistent with the conclusion that bafilomycin induces release of chelatable iron from lysosomes/endosomes, which is taken up by mitochondria. Oxidative stress and chelatable iron thus act as two “hits” synergistically promoting toxic radical formation, mitochondrial dysfunction, and cell death. This pathway of intracellular iron translocation is a potential therapeutic target against oxidative stress–mediated hepatotoxicity. (HEPATOLOGY 2008.)


Gastroenterology | 2011

Autophagy Suppresses Age-Dependent Ischemia and Reperfusion Injury in Livers of Mice

Jin–Hee Wang; In–Sook Ahn; Trevan D. Fischer; Jae–Il Byeon; William A. Dunn; Kevin E. Behrns; Christiaan Leeuwenburgh; Jae-Sung Kim

BACKGROUND & AIMS As life expectancy increases, there are greater numbers of patients with liver diseases who require surgery or transplantation. Livers of older patients have significantly less reparative capacity following ischemia and reperfusion (I/R) injury, which occurs during these operations. There are no strategies to reduce the age-dependent I/R injury. We investigated the role of autophagy in the age dependence of sensitivity to I/R injury. METHODS Hepatocytes and livers from 3- and 26-month-old mice were subjected to in vitro and in vivo I/R, respectively. We analyzed changes in autophagy-related proteins (Atg). Mitochondrial dysfunction was visualized using confocal and intravital multi-photon microscopy of isolated hepatocytes and livers from anesthetized mice, respectively. RESULTS Immunoblot, autophagic flux, genetic, and imaging analyses all associated the increase in sensitivity to I/R injury with age with decreased autophagy and subsequent mitochondrial dysfunction due to calpain-mediated loss of Atg4B. Overexpression of either Atg4B or Beclin-1 recovered Atg4B, increased autophagy, blocked the onset of the mitochondrial permeability transition, and suppressed cell death after I/R in old hepatocytes. Coimmunoprecipitation analysis of hepatocytes and Atg3-knockout cells showed an interaction between Beclin-1 and Atg3, a protein required for autophagosome formation. Intravital multi-photon imaging revealed that overexpression of Beclin-1 or Atg4B attenuated autophagic defects and mitochondrial dysfunction in livers of older mice after I/R. CONCLUSIONS Loss of Atg4B in livers of old mice increases their sensitivity to I/R injury. Increasing autophagy might ameliorate liver damage and restore mitochondrial function after I/R.


Autophagy | 2013

Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity

Debapriya Dutta; Jinze Xu; Jae-Sung Kim; William A. Dunn; Christiaan Leeuwenburgh

Autophagy is a cellular self-digestion process that mediates protein quality control and serves to protect against neurodegenerative disorders, infections, inflammatory diseases and cancer. Current evidence suggests that autophagy can selectively remove damaged organelles such as the mitochondria. Mitochondria-induced oxidative stress has been shown to play a major role in a wide range of pathologies in several organs, including the heart. Few studies have investigated whether enhanced autophagy can offer protection against mitochondrially-generated oxidative stress. We induced mitochondrial stress in cardiomyocytes using antimycin A (AMA), which increased mitochondrial superoxide generation, decreased mitochondrial membrane potential and depressed cellular respiration. In addition, AMA augmented nuclear DNA oxidation and cell death in cardiomyocytes. Interestingly, although oxidative stress has been proposed to induce autophagy, treatment with AMA did not result in stimulation of autophagy or mitophagy in cardiomyocytes. Our results showed that the MTOR inhibitor rapamycin induced autophagy, promoted mitochondrial clearance and protected cardiomyocytes from the cytotoxic effects of AMA, as assessed by apoptotic marker activation and viability assays in both mouse atrial HL-1 cardiomyocytes and human ventricular AC16 cells. Importantly, rapamycin improved mitochondrial function, as determined by cellular respiration, mitochondrial membrane potential and morphology analysis. Furthermore, autophagy induction by rapamycin suppressed the accumulation of ubiquitinylated proteins induced by AMA. Inhibition of rapamycin-induced autophagy by pharmacological or genetic interventions attenuated the cytoprotective effects of rapamycin against AMA. We propose that rapamycin offers cytoprotection against oxidative stress by a combined approach of removing dysfunctional mitochondria as well as by degrading damaged, ubiquitinated proteins. We conclude that autophagy induction by rapamycin could be utilized as a potential therapeutic strategy against oxidative stress-mediated damage in cardiomyocytes.


Toxicological Sciences | 2010

Lysosomal Iron Mobilization and Induction of the Mitochondrial Permeability Transition in Acetaminophen-Induced Toxicity to Mouse Hepatocytes

Kazuyoshi Kon; Jae-Sung Kim; Akira Uchiyama; Hartmut Jaeschke; John J. Lemasters

Acetaminophen induces the mitochondrial permeability transition (MPT) in hepatocytes. Reactive oxygen species (ROS) trigger the MPT and play an important role in AAP-induced hepatocellular injury. Because iron is a catalyst for ROS formation, our aim was to investigate the role of chelatable iron in MPT-dependent acetaminophen toxicity to mouse hepatocytes. Hepatocytes were isolated from fasted male C3Heb/FeJ mice. Necrotic cell killing was determined by propidium iodide fluorometry. Mitochondrial membrane potential was visualized by confocal microscopy of tetramethylrhodamine methylester. Chelatable ferrous ion was monitored by calcein quenching, and 70 kDa rhodamine-dextran was used to visualize lysosomes. Cell killing after acetaminophen (10mM) was delayed and decreased by more than half after 6 h by 1mM desferal or 1mM starch-desferal. In a cell-free system, ferrous but not ferric iron quenched calcein fluorescence, an effect reversed by dipyridyl, a membrane-permeable iron chelator. In hepatocytes loaded with calcein, intracellular calcein fluorescence decreased progressively beginning about 4 h after acetaminophen. Mitochondria then depolarized after about 6 h. Dipyridyl (20mM) dequenched calcein fluorescence. Desferal and starch-desferal conjugate prevented acetaminophen-induced calcein quenching and mitochondrial depolarization. As calcein fluorescence became quenched, lysosomes disappeared, consistent with release of iron from ruptured lysosomes. In conclusion, an increase of cytosolic chelatable ferrous iron occurs during acetaminophen hepatotoxicity, which triggers the MPT and cell killing. Disrupted lysosomes are the likely source of iron, and chelation of this iron decreases acetaminophen toxicity to hepatocytes.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Mitochondrial permeability transition in rat hepatocytes after anoxia/reoxygenation: role of Ca2+-dependent mitochondrial formation of reactive oxygen species.

Jae-Sung Kim; Jin-Hee Wang; John J. Lemasters

Onset of the mitochondrial permeability transition (MPT) is the penultimate event leading to lethal cellular ischemia-reperfusion injury, but the mechanisms precipitating the MPT after reperfusion remain unclear. Here, we investigated the role of mitochondrial free Ca(2+) and reactive oxygen species (ROS) in pH- and MPT-dependent reperfusion injury to hepatocytes. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 h and then reoxygenated at pH 7.4 to simulate ischemia-reperfusion. Some cells were loaded with the Ca(2+) chelators, BAPTA/AM and 2-[(2-bis-[carboxymethyl]aono-5-methoxyphenyl)-methyl-6-methoxy-8-bis[carboxymethyl]aminoquinoline, either by a cold loading protocol for intramitochondrial loading or by warm incubation for cytosolic loading. Cell death was assessed by propidium iodide fluorometry and immunoblotting. Mitochondrial Ca(2+), inner membrane permeability, membrane potential, and ROS formation were monitored with Rhod-2, calcein, tetramethylrhodamine methylester, and dihydrodichlorofluorescein, respectively. Necrotic cell death increased after reoxygenation. Necrosis was blocked by 1 μM cyclosporin A, an MPT inhibitor, and by reoxygenation at pH 6.2. Confocal imaging of Rhod-2, calcein, and dichlorofluorescein revealed that an increase of mitochondrial Ca(2+) and ROS preceded onset of the MPT after reoxygenation. Intramitochondrial Ca(2+) chelation, but not cytosolic Ca(2+) chelation, prevented ROS formation and subsequent necrotic and apoptotic cell death. Reoxygenation with the antioxidants, desferal or diphenylphenylenediamine, also suppressed MPT-mediated cell death. However, inhibition of cytosolic ROS by apocynin or diphenyleneiodonium chloride failed to prevent reoxygenation-induced cell death. In conclusion, Ca(2+)-dependent mitochondrial ROS formation is the molecular signal culminating in onset of the MPT after reoxygenation of anoxic hepatocytes, leading to cell death.


Mechanisms of Ageing and Development | 2010

The emerging role of iron dyshomeostasis in the mitochondrial decay of aging

Jinze Xu; Emanuele Marzetti; Arnold Y. Seo; Jae-Sung Kim; Tomas A. Prolla; Christiaan Leeuwenburgh

Recent studies show that cellular and mitochondrial iron increases with age. Iron overload, especially in mitochondria, increases the availability of redox-active iron, which may be a causal factor in the extensive age-related biomolecular oxidative damage observed in aged organisms. Such damage is thought to play a major role in the pathogenesis of iron overload diseases and age-related pathologies. Indeed, recent findings of the beneficial effects of iron manipulation in life extension in Caenorhabditis elegans, Drosophila and transgenic mice have sparked a renewed interest in the potential role of iron in longevity. A substantial research effort now focuses on developing and testing safe pharmacologic interventions to combat iron dyshomeostasis in aging, acute injuries and in iron overload disorders.


Oncogene | 2013

Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms

Mary Law; Patrick E. Corsino; Stephan C. Jahn; Bradley J. Davis; Sixue Chen; Patel B; Kien Pham; Jianrong Lu; Barbara J. Sheppard; Peter Nørgaard; Jiyong Hong; Paul J. Higgins; Jae-Sung Kim; Hendrik Luesch; Brian K. Law

Aggressive cancers often express E-cadherin in cytoplasmic vesicles rather than on the plasma membrane and this may contribute to the invasive phenotype of these tumors. Therapeutic strategies are not currently available that restore the anti-invasive function of E-cadherin in cancers. MDA-MB-231 cells are a frequently used model of invasive triple-negative breast cancer, and these cells express low levels of E-cadherin that is mislocalized to cytoplasmic vesicles. MDA-MB-231 cell lines stably expressing wild-type E-cadherin or E-cadherin fused to glutathione S-transferase or green fluorescent protein were used as experimental systems to probe the mechanisms responsible for cytoplasmic E-cadherin localization in invasive cancers. Although E-cadherin expression partly reduced cell invasion in vitro, E-cadherin was largely localized to the cytoplasm and did not block the invasiveness of the corresponding orthotopic xenograft tumors. Further studies indicated that the glucocorticoid dexamethasone and the highly potent class I histone deacetylase (HDAC) inhibitor largazole cooperated to induce E-cadherin localization to the plasma membrane in triple-negative breast cancers, and to suppress cellular invasion in vitro. Dexamethasone blocked the production of the cleaved form of the CDCP1 (that is, CUB domain-containing protein 1) protein (cCDCP1) previously implicated in the pro-invasive activities of CDCP1 by upregulating the serine protease inhibitor plasminogen activator inhibitor-1. E-cadherin preferentially associated with cCDCP1 compared with the full-length form. In contrast, largazole did not influence CDCP1 cleavage, but increased the association of E-cadherin with γ-catenin. This effect on E-cadherin/γ-catenin complexes was shared with the nonisoform selective HDAC inhibitors trichostatin A (TSA) and vorinostat (suberoylanilide hydroxamic acid, SAHA), although largazole upregulated endogenous E-cadherin levels more strongly than TSA. These results demonstrate that glucocorticoids and HDAC inhibitors, both of which are currently in clinical use, cooperate to suppress the invasiveness of breast cancer cells through novel, complementary mechanisms that converge on E-cadherin.

Collaboration


Dive into the Jae-Sung Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Lemasters

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge