Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae Won Shin is active.

Publication


Featured researches published by Jae Won Shin.


Science | 2013

Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation

Joe Swift; Irena L. Ivanovska; Amnon Buxboim; Takamasa Harada; P. C Dave P Dingal; Joel Pinter; J. David Pajerowski; Kyle R. Spinler; Jae Won Shin; Manorama Tewari; Florian Rehfeldt; David W. Speicher; Dennis E. Discher

Introduction Tissues can be soft like brain, bone marrow, and fat, which bear little mechanical stress, or stiff like muscle, cartilage, and bone, which sustain high levels of stress. Systematic relationships between tissue stiffness, protein abundance, and differential gene expression are unclear. Recent studies of stem cells cultured on matrices of different elasticity, E, have suggested that differentiation is mechanosensitive, but the molecular mechanisms involved in particular tissues remain elusive. Tissue micromechanics correlate with abundance of collagens and nuclear lamins, which influence cell differentiation. (Left) Collagen and lamin-A levels scale with E, consistent with matching tissue stress to nuclear mechanics. (Right) Matrix stiffness in tissue culture increases cell tension and stabilizes lamin-A, regulating its own transcription and that of stress fiber genes, enhancing differentiation. RA, retinoic acid, i.e., vitamin A; RARG, YAP1, and SRF, transcription factors. Methods We developed quantitative mass spectrometry algorithms to measure protein abundance, stoichiometry, conformation, and interactions within tissues and cells in relation to stiffness of tissues and extracellular matrix. Manipulations of lamin-A levels with small interfering RNA, overexpression, and retinoic acid or antagonist were applied to stem cells cultured on different matrices to assess lamin-A’s role in mechanosensitive differentiation. To characterize molecular mechanisms, promoter analyses, transcriptional profiling, and localization of transcription factors were complemented by measurements of nuclear mechanics and by modeling of the core gene circuit. Results Proteomic profiling of multiple adult solid tissues showed that widely varied levels of collagens in extracellular matrix and of lamin-A in nuclei followed power-law scaling versus E. Scaling for mechanoresponsive lamin-A conformed to predictions from polymer physics, whereas lamin-B’s varied weakly. Tumor xenograft studies further demonstrated that matrix determined tissue E, whereas lamin-A levels responded to changes in E. In tissue culture cells, both lamin-A conformation and expression were mechanosensitive, with phosphorylation and turnover of lamin-A correlating inversely with matrix E. Lamin-A knockdown enhanced mesenchymal stem cell differentiation on soft matrix that favored a low-stress, fat phenotype. Lamin-A overexpression or transcriptional induction with a retinoic acid (RA) antagonist enhanced differentiation on stiff matrix toward a high-stress, bone phenotype. Downstream of matrix stiffness, the RA pathway regulated lamin-A transcription, but feedback by lamin-A regulated RA receptor (RARG) translocation into nuclei. High lamin-A levels physically impeded nuclear remodeling under stress but also coregulated other key factors. These factors included both serum response factor (SRF), which promoted expression of stress fiber–associated proteins involved in differentiation, and a Hippo pathway factor (YAP1) involved in growth. Discussion The characteristic stress in normal tissue favors collagen accumulation and a characteristic stiffness that cells transduce through nuclear lamin-A to enhance tissue-specific differentiation. Tension-inhibited turnover of rope-like filaments of lamin-A provides sufficient mechanochemical control of a core gene circuit to explain the steady-state scaling of lamin-A with E. High lamin-A physically stabilizes the nucleus against stress and thereby stabilizes the nuclear lamina and chromatin, with implications for epigenetic stabilization and limiting of DNA breaks. Moreover, lamin-A levels directly or indirectly regulate many proteins involved in tissue-specific gene expression, and, because lamin-A levels can vary by a factor of 10 or more downstream of tissue mechanics, an important fraction of tissue-specific gene expression depends on tissue mechanics, which changes in development, injury, and many diseases. Lamins and Tissue Stiffness Microenvironment can influence cell fate and behavior; for example, extracellular matrix (ECM) stiffness increases cell proliferation, and ECM rigidity induces disorders in tissue morphogenesis by increasing cell tension. Swift et al. (1240104; see the Perspective by Bainer and Weaver) used proteomics to identify molecules that are mechanical sensors for tissue elasticity in the nucleus and discovered that expression of lamin-A levels apparently functions as a “mechanostat.” Tissues that need to remain stiff under stress rely on lamin-A to keep the cell nucleus whole. [Also see Perspective by Bainer and Weaver] Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.


Journal of Cell Biology | 2014

Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival.

Takamasa Harada; Joe Swift; Jerome Irianto; Jae Won Shin; Kyle R. Spinler; Avathamsa Athirasala; Rocky Diegmiller; P. C Dave P Dingal; Irena L. Ivanovska; Dennis E. Discher

Lamins impede 3D migration but also promote survival against migration-induced stresses.


Journal of Cell Biology | 2012

Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain

Matthew Raab; Joe Swift; P. C Dave P Dingal; Palak Shah; Jae Won Shin; Dennis E. Discher

Cytoskeletal polarization occurs in response to mechanosensing of a transition from soft to stiff matrix during migration and promotes dephosphorylation of myosin-IIA, rearward localization of myosin-IIB, and durotaxis.


Current Biology | 2014

Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin.

Amnon Buxboim; Joe Swift; Jerome Irianto; Kyle R. Spinler; P. C Dave P Dingal; Avathamsa Athirasala; Yun Ruei C Kao; Sangkyun Cho; Takamasa Harada; Jae Won Shin; Dennis E. Discher

Tissue microenvironments are characterized not only in terms of chemical composition but also by collective properties such as stiffness, which influences the contractility of a cell, its adherent morphology, and even differentiation. The nucleoskeletal protein lamin-A,C increases with matrix stiffness, confers nuclear mechanical properties, and influences differentiation of mesenchymal stem cells (MSCs), whereas B-type lamins remain relatively constant. Here we show in single-cell analyses that matrix stiffness couples to myosin-II activity to promote lamin-A,C dephosphorylation at Ser22, which regulates turnover, lamina physical properties, and actomyosin expression. Lamin-A,C phosphorylation is low in interphase versus dividing cells, and its levels rise with states of nuclear rounding in which myosin-II generates little to no tension. Phosphorylated lamin-A,C localizes to nucleoplasm, and phosphorylation is enriched on lamin-A,C fragments and is suppressed by a cyclin-dependent kinase (CDK) inhibitor. Lamin-A,C knockdown in primary MSCs suppresses transcripts predominantly among actomyosin genes, especially in the serum response factor (SRF) pathway. Levels of myosin-IIA thus parallel levels of lamin-A,C, with phosphosite mutants revealing a key role for phosphoregulation. In modeling the system as a parsimonious gene circuit, we show that tension-dependent stabilization of lamin-A,C and myosin-IIA can suitably couple nuclear and cell morphology downstream of matrix mechanics.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical of platelet-producing megakaryocytes

Jae Won Shin; Joe Swift; Kyle R. Spinler; Dennis E. Discher

Cell division, membrane rigidity, and strong adhesion to a rigid matrix are all promoted by myosin-II, and so multinucleated cells with distended membranes—typical of megakaryocytes (MKs)—seem predictable for low myosin activity in cells on soft matrices. Paradoxically, myosin mutations lead to defects in MKs and platelets. Here, reversible inhibition of myosin-II is sustained over several cell cycles to produce 3- to 10-fold increases in polyploid MK and a number of other cell types. Even brief inhibition generates highly distensible, proplatelet-like projections that fragment readily under shear, as seen in platelet generation from MKs in vivo. The effects are maximized with collagenous matrices that are soft and 2D, like the perivascular niches in marrow rather than 3D or rigid, like bone. Although multinucleation of other primary hematopoietic lineages helps to generalize a failure-to-fission mechanism, lineage-specific signaling with increased polyploidy proves possible and novel with phospho-regulation of myosin-II heavy chain. Label-free mass spectrometry quantitation of the MK proteome uses a unique proportional peak fingerprint (ProPF) analysis to also show upregulation of the cytoskeletal and adhesion machinery critical to platelet function. Myosin-inhibited MKs generate more platelets in vitro and also in vivo from the marrows of xenografted mice, while agonist stimulation activates platelet spreading and integrin αIIbβ3. Myosin-II thus seems a central, matrix-regulated node for MK-poiesis and platelet generation.


Cell Stem Cell | 2014

Contractile Forces Sustain and Polarize Hematopoiesis from Stem and Progenitor Cells

Jae Won Shin; Amnon Buxboim; Kyle R. Spinler; Joe Swift; David A. Christian; Christopher A. Hunter; Catherine Léon; Christian Gachet; P. C Dave P Dingal; Irena L. Ivanovska; Florian Rehfeldt; Joel Anne Chasis; Dennis E. Discher

Self-renewal and differentiation of stem cells depend on asymmetric division and polarized motility processes that in other cell types are modulated by nonmuscle myosin-II (MII) forces and matrix mechanics. Here, mass spectrometry-calibrated intracellular flow cytometry of human hematopoiesis reveals MIIB to be a major isoform that is strongly polarized in hematopoietic stem cells and progenitors (HSC/Ps) and thereby downregulated in differentiated cells via asymmetric division. MIIA is constitutive and activated by dephosphorylation during cytokine-triggered differentiation of cells grown on stiff, endosteum-like matrix, but not soft, marrow-like matrix. In vivo, MIIB is required for generation of blood, while MIIA is required for sustained HSC/P engraftment. Reversible inhibition of both isoforms in culture with blebbistatin enriches for long-term hematopoietic multilineage reconstituting cells by 5-fold or more as assessed in vivo. Megakaryocytes also become more polyploid, producing 4-fold more platelets. MII is thus a multifunctional node in polarized division and niche sensing.


Trends in Cell Biology | 2015

Stem cell mechanobiology: diverse lessons from bone marrow

Irena L. Ivanovska; Jae Won Shin; Joe Swift; Dennis E. Discher

A stem cell niche is defined by various chemical and physical features that influence whether a stem cell remains quiescent, divides, or differentiates. We review mechanical determinants that affect cell fate through actomyosin forces, nucleoskeleton remodeling, and mechanosensitive translocation of transcription factors. Current methods for physical characterization of tissue microenvironments are summarized together with efforts to recapitulate niche mechanics in culture. We focus on mesenchymal stem cells, particularly in osteogenesis and adipogenesis, and on blood stem cells - both of which reside in mechanically diverse marrow microenvironments. Given the explosion of efforts with pluripotent stem cells, the evident mechanosensitivity of clinically relevant, multipotent marrow cells underscores an increasing need to examine and understand in vivo and in vitro physical properties on length scales that cells sense.


Differentiation | 2013

Mechanobiology of bone marrow stem cells: From myosin-II forces to compliance of matrix and nucleus in cell forms and fates

Jae Won Shin; Joe Swift; Irena L. Ivanovska; Kyle R. Spinler; Amnon Buxboim; Dennis E. Discher

Adult stem cells and progenitors are of great interest for their clinical application as well as their potential to reveal deep sensitivities to microenvironmental factors. The bone marrow is a niche for at least two types of stem cells, and the prototype is the hematopoietic stem cell/progenitors (HSC/Ps), which have saved many thousands of patients for several decades now. In bone marrow, HSC/Ps interact functionally with marrow stromal cells that are often referred to as mesenchymal stem cells (MSCs) or derivatives thereof. Myosin and matrix elasticity greatly affect MSC function, and these mechanobiological factors are now being explored with HSC/Ps both in vitro and in vivo. Also emerging is a role for the nucleus as a mechanically sensitive organelle that is semi-permeable to transcription factors which are modified for nuclear entry by cytoplasmic mechanobiological pathways. Since therapies envisioned with induced pluripotent stem cells and embryonic stem cells generally involve in vitro commitment to an adult stem cell or progenitor, a very deep understanding of stem cell mechanobiology is essential to progress with these multi-potent cells.


Blood | 2015

Myosin-II repression favors pre/proplatelets but shear activation generates platelets and fails in macrothrombocytopenia.

Kyle R. Spinler; Jae Won Shin; Michele P. Lambert; Dennis E. Discher

Megakaryocyte ploidy and the generation of pre/proplatelets are both increased in culture by pharmacologic inhibition of myosin-II, but nonmuscle myosin-IIA (MIIA) mutations paradoxically cause MYH9-related diseases (MYH9-RD) that adversely affect platelets. In marrow, megakaryocytes extend projections into the microcirculation, where shear facilitates fragmentation to large pre/proplatelets, suggesting that fluid stresses and myosin-II activity somehow couple in platelet biogenesis. Here, in bulk shear, plateletlike particles generated from megakaryocytes are maximized at a shear stress typical of that in the microcirculation and after treatment with a myosin-II inhibitor. MIIA activity in static cells is naturally repressed through phosphorylation at Serine-1943, but shear decreases phosphorylation, consistent with MIIA activation and localization to platelet cortex. Micropipette aspiration of cells shows myosin-II accumulates at stressed sites, but its inhibition prevents such mechanoactivation and facilitates generation of CD41(+) fragments similar in size to pre/proplatelets. MYH9-RD mutants phenocopy inhibition, revealing a dominant negative effect. MIIA is diffuse in the large platelets of a MYH9-RD patient with macrothrombocytopenia and is also diffuse in normal pre/proplatelets treated with inhibitor that blocks in vitro division to small platelets. The findings explain the large platelets in MYH9-RD and the near-normal thrombocrit of patients. Myosin-II regulation thus controls platelet size and number.


PLOS ONE | 2013

RhoA Is Essential for Maintaining Normal Megakaryocyte Ploidy and Platelet Generation

Aae Suzuki; Jae Won Shin; Yuhuan Wang; Sang H. Min; Morty Poncz; John K. Choi; Dennis E. Discher; Chris Carpenter; Lurong Lian; Liang Zhao; Yangfeng Wang; Charles S. Abrams

RhoA plays a multifaceted role in platelet biology. During platelet development, RhoA has been proposed to regulate endomitosis, proplatelet formation, and platelet release, in addition to having a role in platelet activation. These processes were previously studied using pharmacological inhibitors in vitro, which have potential drawbacks, such as non-specific inhibition or incomplete disruption of the intended target proteins. Therefore, we developed a conditional knockout mouse model utilizing the CRE-LOX strategy to ablate RhoA, specifically in megakaryocytes and in platelets to determine its role in platelet development. We demonstrated that deleting RhoA in megakaryocytes in vivo resulted in significant macrothrombocytopenia. RhoA-null megakaryocytes were larger, had higher mean ploidy, and exhibited stiff membranes with micropipette aspiration. However, in contrast to the results observed in experiments relying upon pharmacologic inhibitors, we did not observe any defects in proplatelet formation in megakaryocytes lacking RhoA. Infused RhoA-null megakaryocytes rapidly released platelets, but platelet levels rapidly plummeted within several hours. Our evidence supports the hypothesis that changes in membrane rheology caused infused RhoA-null megakaryocytes to prematurely release aberrant platelets that were unstable. These platelets were cleared quickly from circulation, which led to the macrothrombocytopenia. These observations demonstrate that RhoA is critical for maintaining normal megakaryocyte development and the production of normal platelets.

Collaboration


Dive into the Jae Won Shin's collaboration.

Top Co-Authors

Avatar

Dennis E. Discher

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joe Swift

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kyle R. Spinler

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amnon Buxboim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takamasa Harada

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome Irianto

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge