Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaegeon Ryu is active.

Publication


Featured researches published by Jaegeon Ryu.


ACS Nano | 2016

Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes

Jaegeon Ryu; Dongki Hong; Sinho Choi; Soo-Jin Park

Two-dimensional Si nanosheets have been studied as a promising candidate for lithium-ion battery anode materials. However, Si nanosheets reported so far showed poor cycling performances and required further improvements. In this work, we utilize inexpensive natural clays for preparing high quality Si nanosheets via a one-step simultaneous molten salt-induced exfoliation and chemical reduction process. This approach produces high purity mesoporous Si nanosheets in high yield. As a control experiment, two-step process (pre-exfoliated silicate sheets and subsequent chemical reduction) cannot sustain their original two-dimensional structure. In contrast, one-step method results in a production of 5 nm-thick highly porous Si nanosheets. Carbon-coated Si nanosheet anodes exhibit a high reversible capacity of 865 mAh g(-1) at 1.0 A g(-1) with an outstanding capacity retention of 92.3% after 500 cycles. It also delivers high rate capability, corresponding to a capacity of 60% at 20 A g(-1) compared to that of 2.0 A g(-1). Furthermore, the Si nanosheet electrodes show volume expansion of only 42% after 200 cycles.


Nano Letters | 2016

Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures

Sinho Choi; Jieun Kim; Dae Yeon Hwang; Hyungmin Park; Jaegeon Ryu; Sang Kyu Kwak; Soo-Jin Park

One-dimensional metallic/semiconducting materials have demonstrated as building blocks for various potential applications. Here, we report on a unique synthesis technique for redox-responsive assembled carbon-sheathed metal/semiconducting nanowire heterostructures that does not require a metal catalyst. In our approach, germanium nanowires are grown by the reduction of germanium oxide particles and subsequent self-catalytic growth during the thermal decomposition of natural gas, and simultaneously, carbon sheath layers are uniformly coated on the nanowire surface. This process is a simple, reproducible, size-controllable, and cost-effective process whereby most metal oxides can be transformed into metallic/semiconducting nanowires. Furthermore, the germanium nanowires exhibit stable chemical/thermal stability and outstanding electrochemical performance including a capacity retention of ∼96% after 1200 cycles at the 0.5-1C rate as lithium-ion battery anode.


Nano Research | 2017

Practical considerations of Si-based anodes for lithium-ion battery applications

Jaegeon Ryu; Dongki Hong; Hyun-Wook Lee; Soo-Jin Park

Using Si-based anodes in Li-ion batteries is one of the most feasible approaches to achieve high energy densities despite their disadvantages, such as low conductivity and massive volume expansion, which cause unstable solid electrolyte interphase layers with mechanical failure. The forefront in research and development to address the above challenges suggests the possibility of fully commercially viable cells using various structural and interfacial modifications. In particular, we present a discussion of each dimension of Si-based anodes in multiple controlled systems, including plain, hollow, porous, and uniquely engineered structures, which are further evaluated based on their anode performances, such as initial reversibility, capacity retention for extended cycles with its efficiency, degree of volume expansion tolerance, and rate capabilities, by several practical standards in half cells. With these practical considerations, multi-dimensional structures with uniform size distributions (micrometers, on average) are strongly desired to satisfy the rigorous requirements for widespread applications. Furthermore, we closely examined several full cells composed of Si-based multicomponent anodes coupled with suitable cathodes based on practical standards to propose future research directions for Si-based anodes to keep pace with the rapidly changing market demands for diverse energy storage systems.


ACS Nano | 2018

Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries

Bin Wang; Jaegeon Ryu; Sungho Choi; Gyujin Song; Dongki Hong; Chihyun Hwang; Xiong Chen; Bo Wang; Wei Li; Hyun-Kon Song; Soo-Jin Park; Rodney S. Ruoff

We show that a high energy density can be achieved in a practical manner with freestanding electrodes without using conductive carbon, binders, and current collectors. We made and used a folded graphene composite electrode designed for a high areal capacity anode. The traditional thick graphene composite electrode, such as made by filtering graphene oxide to create a thin film and reducing it such as through chemical or thermal methods, has sluggish reaction kinetics. Instead, we have made and tested a thin composite film electrode that was folded several times using a water-assisted method; it provides a continuous electron transport path in the fold regions and introduces more channels between the folded layers, which significantly enhances the electron/ion transport kinetics. A fold electrode consisting of SnO2/graphene with high areal loading of 5 mg cm-2 has a high areal capacity of 4.15 mAh cm-2, well above commercial graphite anodes (2.50-3.50 mAh cm-2), while the thickness is maintained as low as ∼20 μm. The fold electrode shows stable cycling over 500 cycles at 1.70 mA cm-2 and improved rate capability compared to thick electrodes with the same mass loading but without folds. A full cell of fold electrode coupled with LiCoO2 cathode was assembled and delivered an areal capacity of 2.84 mAh cm-2 after 300 cycles. This folding strategy can be extended to other electrode materials and rechargeable batteries.


Journal of Materials Chemistry | 2017

Cost-effective approach for structural evolution of Si-based multicomponent for Li-ion battery anodes

Dongki Hong; Jaegeon Ryu; Sunghee Shin; Soo-Jin Park

Silicon-based composite materials have been attracting significant attention because they offer an effective strategy for resolving the drawbacks of Si anodes, such as mechanical failure caused by significant volume changes and the resulting unstable interface. These drawbacks significantly affect the electrochemical properties of Si anodes and thereby inhibit their commercialization. Coupling Si anodes with inactive Al2O3 materials is one possible way of addressing these issues. In this study, we developed Si-based multicomponent anode materials comprising a multiscale porous silicon framework uniformly passivated with thin Al2O3 layers. This was achieved using a cost-effective, simple process of selective etching and wet oxidation. We found that the structural properties depended strongly on the Al residue in the core, which later generated asymmetries in the structure and the effective passivation layers. Our novel materials exhibited an excellent battery performance because of the structural robustness conferred by the Al/Al2O3 core support combined with the mechanical stability of the Al2O3 layers. The outermost protecting layers were also shown to enhance Li-ion diffusion through the Li-ion-conducting layers; this stabilized the solid–electrolyte-interphase layers. The wet oxidized Al–Si alloy (ASWO) exhibited an improved cycling performance with 81.9% capacity retention after 500 cycles at 0.2C in a Li half cell. In addition, a full cell using an ASWO-natural graphite (NG) anode and a lithium cobalt oxide (LCO) cathode exhibited excellent cycling performance with 75.3% capacity retention after 200 cycles at 1C.


Chemistry-an Asian Journal | 2016

Revisiting Surface Modification of Graphite: Dual‐Layer Coating for High‐Performance Lithium Battery Anode Materials

Gyujin Song; Jaegeon Ryu; Seunghee Ko; Byoung Man Bang; Sinho Choi; Myoungsoo Shin; Sang-Young Lee; Soo-Jin Park

Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium-ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony-doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as-synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO-decorated natural graphite (c/ATO-NG) is produced. In the (carbon/ATO) dual-layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO-NG anode materials display significant improvements in capacity (530 mA h g(-1) ), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full-cell consisting of a c/ATO-NG anode and an LiNi0.5 Mn1.5 O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual-layer coating concept proposed herein opens a new route toward high-performance anode materials for lithium-ion batteries.


Science | 2017

Sliding chains keep particles together

Jaegeon Ryu; Soo-Jin Park

A polymeric pulley relieves stress as charging silicon particles expand inside a battery Pulleys, first devised in the 3rd century BCE, make it easy to reverse the direction of a lifting force in a fixed axle or to mitigate the work required to lift an object with multiple wheels in a movable state. Pulleys distribute localized force to parallel chains, which greatly reduces the stress on any single strand. Constructing pulleys at the molecular level with small functional materials, especially polymers, is still challenging (1, 2). On page 279 of this issue, Choi et al. (3) describe a class of polymer that imitates the basic principle of a pulleys operation. The primary chain is chemically bonded to a polymer ring threaded by a secondary chain. This material shows promise as a chemical glue—the so-called binder—in batteries that accommodates the volume changes of electrode particles during charging and discharging.


Journal of Materials Chemistry | 2017

Hybridizing germanium anodes with polysaccharide-derived nitrogen-doped carbon for high volumetric capacity of Li-ion batteries

Jaegeon Ryu; Dongki Hong; Sunghee Shin; Wooyoung Choi; Ahyoung Kim; Soo-Jin Park

Achieving high volumetric energy Ge anodes leaves behind a big challenge such as a huge volume expansion upon Li-ion uptake. Among various strategies, the introduction of conductive and buffering carbon layers can resolve the typical problems (such as a large volume change and poor electrical conductivity) of alloy-type anodes to some extent. On the other hand, a cost-effective and scalable synthesis method has yet to be revealed. In this study, a highly conductive carbon (ANHC) layer derived from polysaccharide with a high nitrogen-doping level (>10%) effectively mitigates the structural deformation of Ge anodes, which is also independently involved in the reversible redox reaction with an improved electrochemical performance compared to typical graphite anodes. The ANHC/Ge self-assembled by a carbothermal reduction process has remarkable anode performance in a half cell, including a stable cycle life (95% capacity retention after 500 cycles at a rate of 1C) with a high volumetric capacity of >1500 mA h cm−3 and a significant suppression of electrode swelling (<21%). In addition, the full cell consisting of the ANHC/Ge anode and LiCoO2 cathode shows excellent cyclability corresponding to a capacity retention of 73% over 300 cycles at a rate of 1C, which offers ultra-high volumetric energy applicable in various energy storage applications.


Nature Communications | 2018

Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes

Jaegeon Ryu; Tianwu Chen; Taesoo Bok; Gyujin Song; Jiyoung Ma; Chihyun Hwang; Langli Luo; Hyun-Kon Song; Jaephil Cho; Chongmin Wang; Sulin Zhang; Soo-Jin Park

High-theoretical capacity and low working potential make silicon ideal anode for lithium ion batteries. However, the large volume change of silicon upon lithiation/delithiation poses a critical challenge for stable battery operations. Here, we introduce an unprecedented design, which takes advantage of large deformation and ensures the structural stability of the material by developing a two-dimensional silicon nanosheet coated with a thin carbon layer. During electrochemical cycling, this carbon coated silicon nanosheet exhibits unique deformation patterns, featuring accommodation of deformation in the thickness direction upon lithiation, while forming ripples upon delithiation, as demonstrated by in situ transmission electron microscopy observation and chemomechanical simulation. The ripple formation presents a unique mechanism for releasing the cycling induced stress, rendering the electrode much more stable and durable than the uncoated counterparts. This work demonstrates a general principle as how to take the advantage of the large deformation materials for designing high capacity electrode.Maintaining the structural stability during electrochemical cycling remains a big challenge facing the silicon anode material. Here, the authors have developed 2D silicon nanosheets coated with carbon layers, which show a unique mechanism in releasing internal stress by forming ripple structures.


Journal of Materials Chemistry | 2018

Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage

Taeseung Yoon; Gyujin Song; Ahmad M. Harzandi; Miran Ha; Sungho Choi; Sahar Shadman; Jaegeon Ryu; Taesoo Bok; Soo-Jin Park; Kwang S. Kim

We demonstrate a new class of synthetic process for three-dimensional porous Ge materials (3D-pGe). Starting from zeotype-borogermanate microcubes, the 3D-pGe sample was synthesized through a thermal deformation of artificial Ge-rich zeolite, etching, and subsequent hydrogen reduction. After the synthesis, the resultant byproducts were simply removed by warm water instead of a harmful etchant such as hydrofluoric acid. Benefiting from the structural advantages with meso/macro porosity in the overall framework, the as-prepared 3D-pGe exhibits good electrochemical properties as anode materials for lithium-ion batteries with a high capacity (770 mA h g−1), cycling stability (capacity retention over 83%) after 250 cycles at 1C, and excellent rate capability (32% for 10C with respect to C/5) as well as pseudocapacitive contribution by surface-controlled reaction. This study paves the way to a new synthesis strategy of 3D porous Ge anode materials from zeolite for large-scale energy storage applications.

Collaboration


Dive into the Jaegeon Ryu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongki Hong

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Gyujin Song

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Taesoo Bok

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Myoungsoo Shin

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chihyun Hwang

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyun-Kon Song

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyungmin Park

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae Sung Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaephil Cho

Ulsan National Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge