Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaehoon Jung is active.

Publication


Featured researches published by Jaehoon Jung.


The Plant Cell | 2007

The GIGANTEA-Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of CONSTANS in Arabidopsis

Jaehoon Jung; Yeon-Hee Seo; Pil Joon Seo; José Luis Reyes; Ju Yun; Nam-Hai Chua; Chung-Mo Park

Regulated RNA metabolism appears to be a critical component of molecular mechanisms directing flowering initiation in plants. A group of RNA binding proteins exerts their roles through the autonomous flowering pathway. Posttranscriptional mechanisms regulated by microRNAs (miRNAs) also play a key role in flowering-time control. Here, we demonstrate that the GIGANTEA (GI)-regulated miR172 defines a unique genetic pathway that regulates photoperiodic flowering by inducing FLOWERING LOCUS T (FT) independent of CONSTANS (CO). A late-flowering mutant in which a miR172 target gene, TARGET OF EAT1, is constitutively activated by the nearby insertion of the cauliflower mosaic virus 35S enhancer normally responded to vernalization and gibberellic acid treatments. By contrast, its response to daylength changes was severely disrupted. In the mutant, FT was significantly repressed, but other flowering genes were unaffected. Notably, miR172 abundance is regulated by photoperiod via GI-mediated miRNA processing. Accordingly, miR172-overproducing plants exhibit early flowering under both long days and short days, even in the absence of functional CO, indicating that miR172 promotes photoperiodic flowering through a CO-independent genetic pathway. Therefore, it appears that GI-mediated photoperiodic flowering is governed by the coordinated interaction of two distinct genetic pathways: one mediated via CO and the other mediated via miR172 and its targets.


Planta | 2007

MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis.

Jaehoon Jung; Chung-Mo Park

The miR166/165 group and its target genes regulate diverse aspects of plant development, including apical and lateral meristem formation, leaf polarity, and vascular development. We demonstrate here that MIR166/165 genes are dynamically controlled in regulating shoot apical meristem (SAM) and floral development in parallel to the WUSCHEL (WUS)-CLAVATA (CLV) pathway. Although miR166 and miR165 cleave same target mRNAs, individual MIR166/165 genes exhibit distinct expression domains in different plant tissues. The MIR166/165 expression is also temporarily regulated. Consistent with the dynamic expression patterns, an array of alterations in SAM activities and floral architectures was observed in the miR166/165-overproducing plants. In addition, when a MIR166a-overexpressing mutant was genetically crossed with mutants defective in the WUS-CLV pathway, the resultant crosses exhibited additive phenotypic effects, suggesting that the miR166/165-mediated signal exerts its role via a distinct signaling pathway.


Plant Journal | 2012

The SOC1‐SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis

Jaehoon Jung; Yun Ju; Pil Joon Seo; Jae-Hyung Lee; Chung-Mo Park

miR156 and its target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes constitute an endogenous flowering pathway in Arabidopsis. The SPL genes are regulated post-transcriptionally by miR156, and incorporate endogenous aging signals into floral gene networks. Intriguingly, the SPL genes are also regulated transcriptionally by FLOWERING LOCUS T (FT)-mediated photoperiod signals. However, it is unknown how photoperiod regulates the SPL genes. Here, we show that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FT regulate the SPL3, SPL4 and SPL5 genes by directly binding to the gene promoters in response to photoperiod signals. Notably, the SOC1 regulation of the SPL genes, termed the SOC1-SPL module, also mediates gibberellic acid (GA) signals to promote flowering under non-inductive short days (SDs). Under SDs, the inductive effects of GA on the SPL genes disappeared in the soc1-2 mutant, and the flowering of SPL3-overexpressing transgenic plants (35S:SPL3) was less sensitive to GA. In addition, the 35S:SPL3 × soc1-2 plants flowered much earlier than the soc1-2 mutant, supporting SOC1 regulation of the SPL genes. Our observations indicate that the SOC1-SPL module serves as a molecular link that integrates photoperiod and GA signals to promote flowering in Arabidopsis.


Science | 2016

Phytochromes function as thermosensors in Arabidopsis

Jaehoon Jung; Mirela Domijan; Cornelia Klose; Surojit Biswas; Daphne Ezer; Mingjun Gao; Asif Khan Khattak; Mathew S. Box; Varodom Charoensawan; Sandra Cortijo; Manoj Kumar; Alastair Grant; James C. Locke; Eberhard Schäfer; Katja E. Jaeger; Philip A. Wigge

Combining heat and light responses Plants integrate a variety of environmental signals to regulate growth patterns. Legris et al. and Jung et al. analyzed how the quality of light is interpreted through ambient temperature to regulate transcription and growth (see the Perspective by Halliday and Davis). The phytochromes responsible for reading the ratio of red to far-red light were also responsive to the small shifts in temperature that occur when dusk falls or when shade from neighboring plants cools the soil. Science, this issue p. 897, p. 886; see also p. 832 Red-light photoreceptors also act as temperature sensors in plants. Plants are responsive to temperature, and some species can distinguish differences of 1°C. In Arabidopsis, warmer temperature accelerates flowering and increases elongation growth (thermomorphogenesis). However, the mechanisms of temperature perception are largely unknown. We describe a major thermosensory role for the phytochromes (red light receptors) during the night. Phytochrome null plants display a constitutive warm-temperature response, and consistent with this, we show in this background that the warm-temperature transcriptome becomes derepressed at low temperatures. We found that phytochrome B (phyB) directly associates with the promoters of key target genes in a temperature-dependent manner. The rate of phyB inactivation is proportional to temperature in the dark, enabling phytochromes to function as thermal timers that integrate temperature information over the course of the night.


Nature Materials | 2010

State-selective dissociation of a single water molecule on an ultrathin MgO film

Hyung-Joon Shin; Jaehoon Jung; Kenta Motobayashi; Susumu Yanagisawa; Yoshitada Morikawa; Yousoo Kim; Maki Kawai

The interaction of water with oxide surfaces has drawn considerable interest, owing to its application to problems in diverse scientific fields. Atomic-scale insights into water molecules on the oxide surface have long been recognized as essential for a fundamental understanding of the molecular processes occurring there. Here, we report the dissociation of a single water molecule on an ultrathin MgO film using low-temperature scanning tunnelling microscopy. Two types of dissociation pathway--vibrational excitation and electronic excitation--are selectively achieved by means of injecting tunnelling electrons at the single-molecule level, resulting in different dissociated products according to the reaction paths. Our results reveal the advantage of using a MgO film, rather than bulk MgO, as a substrate in chemical reactions.


Applied Optics | 1999

Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier

Jaehoon Jung; Hui Nam; Ju Han Lee; Namkyoo Park; Byoungho Lee

We propose and demonstrate a novel sensor by using a single-fiber Bragg grating that can simultaneously measure strain and temperature with the aid of an erbium-doped fiber amplifier. By using a linear variation in the amplified spontaneous emission power of the erbium-doped fiber amplifier with temperature, we determine the temperature. By subtracting the temperature effect from the fiber Bragg grating Bragg wavelength shift, we determine the strain. Experiments show rms deviations of 18.2 microepsilon and 0.7 degrees C for strain and temperature, respectively.


Applied Optics | 1999

Fiber Bragg grating temperature sensor with controllable sensitivity.

Jaehoon Jung; Hui Nam; Byoungho Lee; Jae Oh Byun; Nam Seong Kim

We demonstrate a fiber Bragg grating (FBG) sensor with controllable sensitivity by connecting two metal strips that have different temperature-expansion coefficients. By changing the lengths of the metal strips we successfully controlled and improved the temperature sensitivity to 3.3 times of that of bare FBG.


Plant Physiology | 2011

Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis

Jung-Min Park; Y. Y. Kim; Sang-Gyu Kim; Jaehoon Jung; Je-Chang Woo Woo; Chung-Mo Park

Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis.


The Plant Cell | 2008

HD-ZIP III Activity Is Modulated by Competitive Inhibitors via a Feedback Loop in Arabidopsis Shoot Apical Meristem Development

Y. Y. Kim; Sang-Gyu Kim; Minsun Lee; Ilha Lee; Hyeyoung Park; Pil Joon Seo; Jaehoon Jung; Eun-Jung Kwon; Se Won Suh; Kyung Hee Paek; Chung-Mo Park

Shoot apical meristem (SAM) development is coordinately regulated by two interdependent signaling events: one maintaining stem cell identity and the other governing the initiation of lateral organs from the flanks of the SAM. The signaling networks involved in this process are interconnected and are regulated by multiple molecular mechanisms. Class III homeodomain-leucine zipper (HD-ZIP III) proteins are the most extensively studied transcription factors involved in this regulation. However, how different signals are integrated to maintain stem cell identity and to pattern lateral organ polarity remains unclear. Here, we demonstrated that a small ZIP protein, ZPR3, and its functionally redundant homolog, ZPR4, negatively regulate the HD-ZIP III activity in SAM development. ZPR3 directly interacts with PHABULOSA (PHB) and other HD-ZIP III proteins via the ZIP motifs and forms nonfunctional heterodimers. Accordingly, a double mutant, zpr3-2 zpr4-2, exhibits an altered SAM activity with abnormal stem cell maintenance. However, the mutant displays normal patterning of leaf polarity. In addition, we show that PHB positively regulates ZPR3 expression. We therefore propose that HD-ZIP III activity in regulating SAM development is modulated by, among other things, a feedback loop involving the competitive inhibitors ZPR3 and ZPR4.


IEEE Photonics Technology Letters | 2004

Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter

Yong Wook Lee; Jaehoon Jung; Byoungho Lee

In this letter, we propose a novel multiwavelength-switchable fiber ring laser based on a semiconductor optical amplifier and reflection-type interleaver composed of a polarization-maintaining fiber (PMF) loop mirror and a polarization beam splitter. In the proposed fiber laser, stable interleaved waveband switching operation at up to 17 oscillating wavelengths with 0.8 nm spacing, whose switching displacement is 0.4 nm, is successfully demonstrated at room temperature by the proper control of the polarization controller within the PMF loop mirror.

Collaboration


Dive into the Jaehoon Jung's collaboration.

Top Co-Authors

Avatar

Byoungho Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung-Mo Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yong Wook Lee

Electronics and Telecommunications Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maki Kawai

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pil Joon Seo

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyo-Jun Lee

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge