Jaehoon Shin
Johns Hopkins University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaehoon Shin.
Cell Stem Cell | 2016
Hengli Tang; Christy Hammack; Sarah C. Ogden; Zhexing Wen; Xuyu Qian; Yujing Li; Bing Yao; Jaehoon Shin; Feiran Zhang; Emily M. Lee; Kimberly M. Christian; Ruth Didier; Peng Jin; Hongjun Song; Guo Li Ming
The suspected link between infection by Zika virus (ZIKV), a re-emerging flavivirus, and microcephaly is an urgent global health concern. The direct target cells of ZIKV in the developing human fetus are not clear. Here we show that a strain of the ZIKV, MR766, serially passaged in monkey and mosquito cells efficiently infects human neural progenitor cells (hNPCs) derived from induced pluripotent stem cells. Infected hNPCs further release infectious ZIKV particles. Importantly, ZIKV infection increases cell death and dysregulates cell-cycle progression, resulting in attenuated hNPC growth. Global gene expression analysis of infected hNPCs reveals transcriptional dysregulation, notably of cell-cycle-related pathways. Our results identify hNPCs as a direct ZIKV target. In addition, we establish a tractable experimental model system to investigate the impact and mechanism of ZIKV on human brain development and provide a platform to screen therapeutic compounds.
Nature Neuroscience | 2014
Junjie U. Guo; Yijing Su; Joo Heon Shin; Jaehoon Shin; Hongda Li; Bin Xie; Chun Zhong; Shaohui Hu; Thuc Le; Guoping Fan; Heng Zhu; Qiang Chang; Yuan Gao; Guo Li Ming; Hongjun Song
DNA methylation has critical roles in the nervous system and has been traditionally considered to be restricted to CpG dinucleotides in metazoan genomes. Here we show that the single base–resolution DNA methylome from adult mouse dentate neurons consists of both CpG (∼75%) and CpH (∼25%) methylation (H = A/C/T). Neuronal CpH methylation is conserved in human brains, enriched in regions of low CpG density, depleted at protein-DNA interaction sites and anticorrelated with gene expression. Functionally, both methylated CpGs (mCpGs) and mCpHs can repress transcription in vitro and are recognized by methyl-CpG binding protein 2 (MeCP2) in neurons in vivo. Unlike most CpG methylation, CpH methylation is established de novo during neuronal maturation and requires DNA methyltransferase 3A (DNMT3A) for active maintenance in postmitotic neurons. These characteristics of CpH methylation suggest that a substantially expanded proportion of the neuronal genome is under cytosine methylation regulation and provide a new foundation for understanding the role of this key epigenetic modification in the nervous system.
Nature | 2014
Zhexing Wen; Ha Nam Nguyen; Ziyuan Guo; Matthew A. Lalli; Xinyuan Wang; Yijing Su; Nam Shik Kim; Ki Jun Yoon; Jaehoon Shin; Ce Zhang; Georgia Makri; David Nauen; Huimei Yu; Elmer Guzman; Cheng Hsuan Chiang; Nadine Yoritomo; Kozo Kaibuchi; Jizhong Zou; Kimberly M. Christian; Linzhao Cheng; Christopher A. Ross; Russell L. Margolis; Gong Chen; Kenneth S. Kosik; Hongjun Song; Guo Li Ming
Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and ‘a disease of synapses’ is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.
Cell Stem Cell | 2015
Jaehoon Shin; Daniel A. Berg; Yunhua Zhu; Joseph Y. Shin; Juan Song; Michael A. Bonaguidi; Grigori Enikolopov; David Nauen; Kimberly M. Christian; Guo Li Ming; Hongjun Song
Somatic stem cells contribute to tissue ontogenesis, homeostasis, and regeneration through sequential processes. Systematic molecular analysis of stem cell behavior is challenging because classic approaches cannot resolve cellular heterogeneity or capture developmental dynamics. Here we provide a comprehensive resource of single-cell transcriptomes of adult hippocampal quiescent neural stem cells (qNSCs) and their immediate progeny. We further developed Waterfall, a bioinformatic pipeline, to statistically quantify singe-cell gene expression along a de novo reconstructed continuous developmental trajectory. Our study reveals molecular signatures of adult qNSCs, characterized by active niche signaling integration and low protein translation capacity. Our analyses further delineate molecular cascades underlying qNSC activation and neurogenesis initiation, exemplified by decreased extrinsic signaling capacity, primed translational machinery, and regulatory switches in transcription factors, metabolism, and energy sources. Our study reveals the molecular continuum underlying adult neurogenesis and illustrates how Waterfall can be used for single-cell omics analyses of various continuous biological processes.
eLife | 2013
Shaohui Hu; Jun Wan; Yijing Su; Qifeng Song; Yaxue Zeng; Ha Nam Nguyen; Jaehoon Shin; Eric Cox; Hee Sool Rho; Crystal Woodard; Shuli Xia; Shuang Liu; Huibin Lyu; Guo Li Ming; Herschel Wade; Hongjun Song; Jiang Qian; Heng Zhu
DNA methylation, especially CpG methylation at promoter regions, has been generally considered as a potent epigenetic modification that prohibits transcription factor (TF) recruitment, resulting in transcription suppression. Here, we used a protein microarray-based approach to systematically survey the entire human TF family and found numerous purified TFs with methylated CpG (mCpG)-dependent DNA-binding activities. Interestingly, some TFs exhibit specific binding activity to methylated and unmethylated DNA motifs of distinct sequences. To elucidate the underlying mechanism, we focused on Kruppel-like factor 4 (KLF4), and decoupled its mCpG- and CpG-binding activities via site-directed mutagenesis. Furthermore, KLF4 binds specific methylated or unmethylated motifs in human embryonic stem cells in vivo. Our study suggests that mCpG-dependent TF binding activity is a widespread phenomenon and provides a new framework to understand the role and mechanism of TFs in epigenetic regulation of gene transcription. DOI: http://dx.doi.org/10.7554/eLife.00726.001
Nature Neuroscience | 2015
Huimei Yu; Yijing Su; Jaehoon Shin; Chun Zhong; Junjie U. Guo; Yi Lan Weng; Fuying Gao; Daniel H. Geschwind; Giovanni Coppola; Guo Li Ming; Hongjun Song
Contrary to the long-held belief that DNA methylation of terminally differentiated cells is permanent and essentially immutable, post-mitotic neurons exhibit extensive DNA demethylation. The cellular function of active DNA demethylation in neurons, however, remains largely unknown. Tet family proteins oxidize 5-methylcytosine to initiate active DNA demethylation through the base-excision repair (BER) pathway. We found that synaptic activity bi-directionally regulates neuronal Tet3 expression. Functionally, knockdown of Tet or inhibition of BER in hippocampal neurons elevated excitatory glutamatergic synaptic transmission, whereas overexpressing Tet3 or Tet1 catalytic domain decreased it. Furthermore, dysregulation of Tet3 signaling prevented homeostatic synaptic plasticity. Mechanistically, Tet3 dictated neuronal surface GluR1 levels. RNA-seq analyses further revealed a pivotal role of Tet3 in regulating gene expression in response to global synaptic activity changes. Thus, Tet3 serves as a synaptic activity sensor to epigenetically regulate fundamental properties and meta-plasticity of neurons via active DNA demethylation.
Nature Neuroscience | 2014
Jaehoon Shin; Guo Li Ming; Hongjun Song
The mammalian brain is an evolutionary marvel in which engraving and re-engraving of cellular states enable complex information processing and lifelong maintenance. Understanding the mechanisms by which neurons alter and maintain their molecular signatures during information processing is a fundamental goal of neuroscience. Next-generation sequencing (NGS) technology is rapidly transforming the ability to probe the molecular basis of neuronal function. NGS can define not only the complete molecular signatures of cells by transcriptome analyses but also the cascade of events that induce or maintain such signatures by epigenetic analyses. Here we offer some general and practical information to demystify NGS technology and highlight its potential to the neuroscience field. We start with discussion of the complexity of the nervous system, then introduce various applications of NGS with practical considerations and describe basic principles underlying various NGS technologies. Finally, we discuss emerging NGS-related technologies for the neuroscience field.
Nature Neuroscience | 2017
Yijing Su; Jaehoon Shin; Chun Zhong; Sabrina Wang; Prith Roychowdhury; Jongseuk Lim; David Kim; Guo Li Ming; Hongjun Song
Neuronal activity-induced gene expression modulates the function and plasticity of the nervous system. It is unknown whether and to what extent neuronal activity may trigger changes in chromatin accessibility, a major mode of epigenetic regulation of gene expression. Here we compared chromatin accessibility landscapes of adult mouse dentate granule neurons in vivo before and after synchronous neuronal activation using an assay for transposase-accessible chromatin using sequencing (ATAC-seq). We found genome-wide changes 1 h after activation, with enrichment of gained-open sites at active enhancer regions and at binding sites for AP1-complex components, including c-Fos. Some changes remained stable for at least 24 h. Functional analysis further implicates a critical role of c-Fos in initiating, but not maintaining, neuronal activity-induced chromatin opening. Our results reveal dynamic changes of chromatin accessibility in adult mammalian brains and suggest an epigenetic mechanism by which transient neuronal activation leads to dynamic changes in gene expression via modifying chromatin accessibility.
Molecular Cell | 2016
Yaxue Zeng; Bing Yao; Jaehoon Shin; Li Lin; Namshik Kim; Qifeng Song; Shuang Liu; Yijing Su; Junjie U. Guo; Luoxiu Huang; Jun Wan; Hao Wu; Jiang Qian; Xiaodong Cheng; Heng Zhu; Guo Li Ming; Peng Jin; Hongjun Song
Lin28, a well-known RNA-binding protein, regulates diverse cellular properties. All physiological functions of Lin28A characterized so far have been attributed to its repression of let-7 miRNA biogenesis or modulation of mRNA translational efficiency. Here we show that Lin28A directly binds to a consensus DNA sequence in vitro and in mouse embryonic stem cells in vivo. ChIP-seq and RNA-seq reveal enrichment of Lin28A binding around transcription start sites and a positive correlation between its genomic occupancy and expression of many associated genes. Mechanistically, Lin28A recruits 5-methylcytosine-dioxygenase Tet1 to genomic binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. Either Lin28A or Tet1 knockdown leads to dysregulated DNA methylation and expression of common target genes. These results reveal a surprising role for Lin28A in transcriptional regulation via epigenetic DNA modifications and have implications for understanding mechanisms underlying versatile functions of Lin28A in mammalian systems.
Neurotherapeutics | 2013
Yi Lan Weng; Ran An; Jaehoon Shin; Hongjun Song; Guo Li Ming
Mounting evidence has recently underscored the importance of DNA methylation in normal brain functions. DNA methylation machineries are responsible for dynamic regulation of methylation patterns in discrete brain regions. In addition to methylation of cytosines in genomic DNA (5-methylcytosine; 5mC), other forms of modified cytosines, such as 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, can potentially act as epigenetic marks that regulate gene expression. Importantly, epigenetic modifications require cognate binding proteins to read and translate information into gene expression regulation. Abnormal or incorrect interpretation of DNA methylation patterns can cause devastating consequences, including mental illnesses and neurological disorders. Although DNA methylation was generally considered to be a stable epigenetic mark in post-mitotic cells, recent studies have revealed dynamic DNA modifications in neurons. Such reversibility of 5mC sheds light on potential mechanisms underlying some neurological disorders and suggests a new route to correct aberrant methylation patterns associated with these disorders.