Jaekyoung Son
University of Ulsan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaekyoung Son.
Nature | 2013
Jaekyoung Son; Costas A. Lyssiotis; Haoqiang Ying; Xiaoxu Wang; Sujun Hua; Matteo Ligorio; Rushika M. Perera; Cristina R. Ferrone; Edouard Mullarky; Ng Shyh-Chang; Ya’an Kang; Jason B. Fleming; Nabeel Bardeesy; John M. Asara; Marcia C. Haigis; Ronald A. DePinho; Lewis C. Cantley; Alec C. Kimmelman
Cancer cells have metabolic dependencies that distinguish them from their normal counterparts. Among these dependencies is an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumours and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation. Here we report the identification of a non-canonical pathway of glutamine use in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for tumour growth. Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate into α-ketoglutarate in the mitochondria to fuel the tricarboxylic acid cycle, PDAC relies on a distinct pathway in which glutamine-derived aspartate is transported into the cytoplasm where it can be converted into oxaloacetate by aspartate transaminase (GOT1). Subsequently, this oxaloacetate is converted into malate and then pyruvate, ostensibly increasing the NADPH/NADP+ ratio which can potentially maintain the cellular redox state. Importantly, PDAC cells are strongly dependent on this series of reactions, as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to an increase in reactive oxygen species and a reduction in reduced glutathione. Moreover, knockdown of any component enzyme in this series of reactions also results in a pronounced suppression of PDAC growth in vitro and in vivo. Furthermore, we establish that the reprogramming of glutamine metabolism is mediated by oncogenic KRAS, the signature genetic alteration in PDAC, through the transcriptional upregulation and repression of key metabolic enzymes in this pathway. The essentiality of this pathway in PDAC and the fact that it is dispensable in normal cells may provide novel therapeutic approaches to treat these refractory tumours.
Cell Cycle | 2013
Costas A. Lyssiotis; Jaekyoung Son; Lewis C. Cantley; Alec C. Kimmelman
In order for a cell to dupli-cate, it must double its genome, protein content and lipid mass. This process requires energy in the form of ATP and NADPH. However, unlike ATP, the amount of NADPH required for biosyn-thesis is much greater than that needed for homeostasis, which makes the genera-tion of NADPH rate limiting for cellular proliferation. NADPH is used for both macromolecular biosynthesis (e.g., lipids and deoxynucleotide triphosphates) and the maintenance of a reduced intracellular environment.
Genes & Development | 2014
Esra A. Akbay; Javid Moslehi; Camilla L. Christensen; Supriya K. Saha; Jeremy H. Tchaicha; Shakti Ramkissoon; Kelly M. Stewart; Julian Carretero; Eiki Kikuchi; Haikuo Zhang; Travis J. Cohoon; Stuart Murray; Wei Liu; Kazumasa Uno; Sudeshna Fisch; Kristen Jones; Sushma Gurumurthy; Camelia Gliser; Sung Choe; Marie C. Keenan; Jaekyoung Son; Illana A. Stanley; Julie A. Losman; Robert F. Padera; Roderick T. Bronson; John M. Asara; Omar Abdel-Wahab; Philip C. Amrein; Amir T. Fathi; Nika N. Danial
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced phenotypes, including runting, hydrocephalus, and shortened life span, recapitulating the abnormalities observed in D2HGA patients. The diseased hearts exhibited mitochondrial damage and glycogen accumulation with a concordant up-regulation of genes involved in glycogen biosynthesis. Notably, mild cardiac hypertrophy was also observed in nude mice implanted with IDH2(R140Q)-expressing xenografts, suggesting that 2HG may potentially act in a paracrine fashion. Finally, we show that silencing of IDH2(R140Q) in mice with an inducible transgene restores heart function by lowering 2HG levels. Together, these findings indicate that inhibitors of mutant IDH2 may be beneficial in the treatment of D2HGA and suggest that 2HG produced by IDH mutant tumors has the potential to provoke a paraneoplastic condition.
Stem Cells and Development | 2015
Hyunsook Kang; Kang-Hyun Kim; Jisun Lim; You-Sun Kim; Jinbeom Heo; Jongjin Choi; Jaeho Jeong; YongHwan Kim; Seong Who Kim; Yeon-Mok Oh; Myung-Soo Choo; Jaekyoung Son; Su Jung Kim; Hyun Ju Yoo; Wonil Oh; Soo Jin Choi; Sei Won Lee
Stem cell (SC) therapy has become a potential treatment modality for pulmonary artery hypertension (PAH), but the efficacy of human SC and priming effects have not yet been established. The mobilization and homing of hematopoietic stem cells (HSCs) are modulated by priming factors that include a bioactive lipid, sphingosine-1-phosphate (S1P), which stimulates CXCR4 receptor kinase signaling. Here, we show that priming human mesenchymal stem cells (MSCs) with S1P enhances their therapeutic efficacy in PAH. Human MSCs, similar to HSCs, showed stronger chemoattraction to S1P in transwell assays. Concomitantly, MSCs treated with 0.2 μM S1P showed increased phosphorylation of both MAPKp42/44 and AKT protein compared with nonprimed MSCs. Furthermore, S1P-primed MSCs potentiated colony forming unit-fibroblast, anti-inflammatory, and angiogenic activities of MSCs in culture. In a PAH animal model induced by subcutaneously injected monocrotaline, administration of human cord blood-derived MSCs (hCB-MSCs) or S1P-primed cells significantly attenuated the elevated right ventricular systolic pressure. Notably, S1P-primed CB-MSCs, but not unprimed hCB-MSCs, also elicited a significant reduction in the right ventricular weight ratio and pulmonary vascular wall thickness. S1P-primed MSCs enhanced the expression of several genes responsible for stem cell trafficking and angiogenesis, increasing the density of blood vessels in the damaged lungs. Thus, this study demonstrates that human MSCs have potential utility for the treatment of PAH, and that S1P priming increases the effects of SC therapy by enhancing cardiac and vascular remodeling. By optimizing this protocol in future studies, SC therapy might form a basis for clinical trials to treat human PAH.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Ashish Juvekar; Hai Hu; Sina Yadegarynia; Costas A. Lyssiotis; Soumya Ullas; Evan C. Lien; Gary Bellinger; Jaekyoung Son; Rosanna C. Hok; Pankaj Seth; Michele B. Daly; Baek Kim; Ralph Scully; John M. Asara; Lewis C. Cantley; Gerburg Wulf
Significance Mutations in the PI3K pathway are highly prevalent in cancers, and isoform-specific and pan-PI3K inhibitors have entered clinical trials in both solid and hematologic malignancies. The PI3K δ-specific inhibitor idelalisib (in combination with rituximab) was recently approved for the treatment of chronic lymphocytic leukemia. However, identifying tumor types and biological mechanisms that predict for response to PI3K inhibitors as single agents or in combination has been a challenge. Our data indicate that PI3K inhibitors induce DNA damage in tumors that have defects in DNA damage-repair pathways and that they do so by impairing the production of Rib phosphate and amino acids needed for deoxynucleotide synthesis. We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1f/fp53f/f), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.
Scientific Reports | 2016
Ju-Won Seo; Jungwon Choi; So-Yeon Lee; Suhyun Sung; Hyun Ju Yoo; Min-Ji Kang; Heesun Cheong; Jaekyoung Son
Macroautophagy (autophagy) is believed to maintain energy homeostasis by degrading unnecessary cellular components and molecules. Its implication in regulating cancer metabolism recently started to be uncovered. However, the precise roles of autophagy in cancer metabolism are still unclear. Here, we show that autophagy plays a critical role in glutamine metabolism, which is required for tumor survival. Pancreatic ductal adenocarcinoma (PDAC) cells require both autophagy and typical glutamine transporters to maintain intracellular glutamine levels. Glutamine deprivation, but not that of glucose, led to the activation of macropinocytosis-associated autophagy through TFEB induction and translocation into the nucleus. In contrast, glutamine uptake increased as a compensatory response to decreased intracellular glutamine levels upon autophagy inhibition. Moreover, autophagy inhibition and glutamine deprivation did not induce cell death, while glutamine deprivation dramatically activated apoptotic cell death upon autophagy inhibition. Interestingly, the addition of α-ketoglutarate significantly rescued the apoptotic cell death caused by the combination of the inhibition of autophagy with glutamine deprivation. Our data suggest that macropinocytosis-associated autophagy is a critical process providing glutamine for anaplerosis of the TCA cycle in PDAC. Thus, targeting both autophagy and glutamine metabolism to completely block glutamine supply may provide new therapeutic approaches to treat refractory tumors.
Oncotarget | 2016
Joon Hee Kang; Seon-Hyeong Lee; Jae-Seon Lee; Boas Nam; Tae Wha Seong; Jaekyoung Son; Hyonchol Jang; Kyeong Man Hong; Cheolju Lee; Soo-Youl Kim
Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin.
Biochemical and Biophysical Research Communications | 2016
Gibok Lee; Taek-In Oh; Ki Bum Um; Hyeshin Yoon; Jaekyoung Son; Byeong Mo Kim; Hong-Il Kim; Hackyoung Kim; Young Jun Kim; Chang-Soo Lee; Ji-Hong Lim
USP7 is a deubiquitinating enzyme that involves the ubiquitin proteasome system (UPS) to maintain regulation of protein synthesis and degradation. The well-known substrate of USP7 is the Mdm2-p53 complex. In fact, several studies have reported that functional inhibition of USP7 induces cancer cell apoptosis through activation of p53. However, the contribution of oxidative or endoplasmic reticulum (ER) stress, which is commonly induced by inhibition of the UPS for USP7 inhibitor-mediated apoptosis in cancer cells, has not been investigated. In contrast to previous reports, we show that p53 is not critical during USP7 inhibitor-induced apoptosis in several cancer cells. Inhibition of deubiquitinating enzyme activities by USP7 inhibitors causes ER stress by accumulating polyubiquitinated proteins in cancer cells. Furthermore, we demonstrate that USP7 inhibitors increase intracellular reactive oxygen species and mainly cause cancer cell apoptosis. Taken together, our results reveal that oxidative and ER stress, rather than the Mdm2-p53 axis, mainly contributes to USP7 inhibitor-mediated apoptosis in cancer cells.
Cell Death and Disease | 2016
Jae Seon Lee; Joon Hee Kang; Seon Hyeong Lee; Dongwan Hong; Jaekyoung Son; Kyeong Man Hong; Jaewhan Song; Soo-Youl Kim
Glutaminase 1 (GLS1) expression is increased in non-small cell lung cancer (NSCLC). GLS1 knockdown using siRNA or inhibition using bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) induced cell cycle arrest with significant reduction of ATP level while levels of reactive oxygen species or glutathione were not affected in NSCLC cell lines. Recently we found that NSCLC significantly depends on cytosol NADH for ATP production. GLS1 remarkably contributes to ATP production through transferring cytosolic NADH into mitochondria via malate-aspartate shuttle by supply of glutamate in NSCLC. Regulation of malate-aspartate shuttle by knockdown or inhibition of glutamic-oxaloacetic transaminase 2 or malate dehydrogenase 2 mimicked GLS1 knockdown, which induced cell death with ATP reduction in NSCLC. Therefore, GLS1 inhibition induced cell cycle arrest with ATP depletion by glutamate reduction. Dual inhibition with BPTES and thymidylate synthase inhibitor, 5-fluorouracil (5-FU), elicits cell death synergistically through cell cycle arrest in NSCLC. A preclinical xenograft model of NSCLC showed remarkable anti-tumour effect synergistically in the BPTES and 5-FU dual therapy group.
International Journal of Molecular Medicine | 2015
Bo-Yun Jang; Hyung Don Ryoo; Jaekyoung Son; Kyung-Chul Choi; Dong-Myoung Shin; Sang-Wook Kang; Min-Ji Kang
The synthesis of proteins in the endoplasmic reticulum (ER) that exceeds the protein folding capacity of this organelle is a frequent cause of cellular dysfunction and disease. An example of such a disease is alpha-1-antitrypsin (A1AT) deficiency, caused by destabilizing mutations in this glycoprotein. It is considered that the mutant proteins are recognized in the ER by lectins and are subsequently degraded through the proteasome, leading to a deficiency in this enzyme in the afflicted patients. We previously established a Drosophila model of this disease by overexpressing the null Hong Kong (NHK) allele of this gene and found that the Drosophila lectin, ER degradation-enhancing α-mannosidase-like protein 2 (EDEM2), can accelerate the degradation of A1AT when overexpressed. NHK is a rare allele, and in this study, we investigated in depth the mechanisms through which Drosophila EDEMs affect the degradation of the Z variant, which is the predominant disease allele. Specifically, we report that the Z allele does not activate ER stress signaling as prominently as the NHK allele, but similarly requires both Drosophila EDEM1 and EDEM2 for the degradation of the protein. We demonstrate that EDEMs are required for their ubiquitination, and without EDEMs, glycosylated A1AT mutants accumulate in cells. These results support the role of the EDEM-mediated ubiquitination of the alpha-1-antitrypsin Z (ATZ) allele, and establish a Drosophila model for the study of this protein and disease.