Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaekyung Shim is active.

Publication


Featured researches published by Jaekyung Shim.


Journal of Biological Chemistry | 2003

p57KIP2 Modulates Stress-activated Signaling by Inhibiting c-Jun NH2-terminal Kinase/Stress-activated Protein Kinase

Tong Shin Chang; Myung Jin Kim; Kanghyun Ryoo; Jihyun Park; Soo Jung Eom; Jaekyung Shim; Keiichi I. Nakayama; Keiko Nakayama; Motowo Tomita; Katsuhiko Takahashi; Min Jae Lee; Eui Ju Choi

p57KIP2, a member of the Cip/Kip family of enzymes that inhibit several cyclin-dependent kinases, plays a role in many biological events including cell proliferation, differentiation, apoptosis, tumorigenesis and developmental changes. The human p57KIP2 gene is located in chromosome 11p15.5, a region implicated in sporadic cancers and Beckwith-Wiedemann syndrome. We here report that p57KIP2 physically interacts with and inhibits c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK). The carboxyl-terminal QT domain of p57KIP2 is crucial for the inhibition of JNK/SAPK. Overexpressed p57KIP2 also suppressed UV- and MEKK1-induced apoptotic cell death. p57KIP2 expression during C2C12 myoblast differentiation resulted in repression of the JNK activity stimulated by UV light. Furthermore, UV-stimulated JNK1 activity was higher in mouse embryonic fibroblasts derived from p57–/– mice than in the cells from wild-type mice. Taken together, these findings suggest that p57KIP2 modulates stress-activated signaling by functioning as an endogenous inhibitor of JNK/SAPK.


international conference on robotics and automation | 2001

Algebraic elimination-based real-time forward kinematics of the 6-6 Stewart platform with planar base and platform

Tae-Young Lee; Jaekyung Shim

Presents the closed-form forward kinematics of the 6-6 Stewart platform with planar base and moving platform. Based on an algebraic elimination method, it first derives a 20th-degree univariate equation from the determinant of the final Sylvesters matrix. Then, it finds all solutions corresponding to the possible configurations of the platform for a given set of leg lengths. The proposed algorithm requires less computation time for real-time applications than the existing ones. Unlike numerical iterative schemes, this algorithm demands no initial estimate and is free from the problem that it fails to converge to the actual solution within limited time. The presented method has been implemented in C language and a numerical example is given to confirm the effectiveness and the accuracy of the developed algorithm.


PLOS ONE | 2014

High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

Hee Jin Shim; Eun-Mi Lee; Long Duy Nguyen; Jaekyung Shim; Young-Han Song

Ionizing radiation (IR) treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs) generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.


Archives of Biochemistry and Biophysics | 2014

CD24 regulates stemness and the epithelial to mesenchymal transition through modulation of Notch1 mRNA stability by p38MAPK

Juyeon Lim; Kyung-min Lee; Jaekyung Shim; Incheol Shin

We report here that CD24 knockdown resulted in decreased expression of Notch1 in MCF-7 cells. CD24-downstream p38MAPK was shown to regulate Notch1 at the level of mRNA stability. We also found that CD24-mediated cell migration, invasion, mammosphere formation, and drug resistance was regulated by its downstream target Notch1. Together, our results indicate that CD24 may regulate the epithelial to mesenchymal transition and stemness through Notch1 signaling in breast cancer cells.


Molecular and Cellular Biology | 2014

TRP14 Inhibits Osteoclast Differentiation via Its Catalytic Activity

Sohyun Hong; Jeong-Eun Huh; Soo Young Lee; Jaekyung Shim; Sue Goo Rhee; Woojin Jeong

ABSTRACT We previously reported the inhibitory role of thioredoxin-related protein of 14 kDa (TRP14), a novel disulfide reductase, in nuclear factor-κB (NF-κB) activation, but its biological function has remained to be explored. Here, we evaluated the role of TRP14 in the differentiation and function of osteoclasts (OCs), for which NF-κB and cellular redox regulation have been known to be crucial, using RAW 264.7 macrophage cells expressing wild-type TRP14 or a catalytically inactive mutant, as well as its small interfering RNA. TRP14 depletion enhanced OC differentiation, actin ring formation, and bone resorption, as well as the accumulation of reactive oxygen species (ROS). TRP14 depletion promoted the activation of NF-κB, c-Jun NH2-terminal kinase, and p38, the expression of c-Fos, and the consequent induction of nuclear factor of activated T cell, cytoplasmic 1 (NFATc1), a key determinant of osteoclastogenesis. However, pretreatment with N-acetylcysteine or diphenylene iodonium significantly reduced the OC differentiation, as well as the ROS accumulation and NF-κB activation, that were enhanced by TRP14 depletion. Furthermore, receptor activator of NF-κB ligand (RANKL)-induced ROS accumulation, NF-κB activation, and OC differentiation were inhibited by the ectopic expression of wild-type TRP14 but not by its catalytically inactive mutant. These results suggest that TRP14 regulates OC differentiation and bone resorption through its catalytic activity and that enhancing TRP14 may present a new strategy for preventing bone resorption diseases.


Proteomics | 2014

Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system

Raksha Singh; Jae-Eun Lee; Sarmina Dangol; Jihyun Choi; Ran Hee Yoo; Jae Sun Moon; Jaekyung Shim; Randeep Rakwal; Ganesh Kumar Agrawal; Nam-Soo Jwa

The mitogen‐activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K‐interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two‐hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K‐interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full‐length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead‐associated domain‐containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K‐interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors.


FEBS Letters | 2008

The tobacco gene Ntcyc07 confers arsenite tolerance in Saccharomyces cerevisiae by reducing the steady state levels of intracellular arsenic

Young Geun Mok; Byoung-Doo Lee; Young Jin Kim; Chang Eun Lee; Dong Gwan Kim; Joohyun Lee; Jaekyung Shim; Yuling Meng; Barry P. Rosen; Jong Soon Choi; Hyoung Sun Shin; Seong-Ki Kim; June Seung Lee; Seongbin Hwang

We cloned a plant gene, Ntcyc07, conferring arsenite tolerance by expressing a tobacco expression library in WT yeast (Y800). Expression of Ntcyc07 increased the tolerance to As(III) and decreased its accumulation, suggesting that the enhanced As(III) tolerance resulted from a reduction of the intracellular arsenic level. Interestingly, expression of Ntcyc07 increased the expression of the As(III) export carrier ACR3, but repressed that of As(III) uptake channel FPS1. Ntcyc07p interacted with Acr1p, which is the transcriptional activator of ACR3, but not with the ACR3 promoter. Taken together, the data indicated that Ntcyc07p promoted As(III) tolerance by decreasing the intracellular level of As(III) via increasing the expression of ACR3 and reducing that of FPS1.


Biochimica et Biophysica Acta | 2017

Emerin suppresses Notch signaling by restricting the Notch intracellular domain to the nuclear membrane.

Byongsun Lee; Tae-Hee Lee; Jaekyung Shim

Emerin is an inner nuclear membrane protein that is involved in maintaining the mechanical integrity of the nuclear membrane. Increasing evidence supports the involvement of emerin in the regulation of gene expression; however, its precise function remains to be elucidated. Here, we show that emerin downregulated genes downstream of Notch signaling, which are activated exclusively by the Notch intracellular domain (NICD). Deletion mutant experiments revealed that the transmembrane domain of emerin is important for the inhibition of Notch signaling. Emerin interacted directly and colocalized with the NICD at the nuclear membrane. Emerin knockdown induced the phosphorylation of ERK and AKT, increased endogenous Notch signaling, and inhibited hydrogen peroxide-induced apoptosis in HeLa cells. Notably, the downregulation of barrier-to-autointegration factor (BAF) or lamin A/C increased Notch signaling by inducing the release of emerin into the cytosol, implying that nuclear membrane-bound emerin acts as an endogenous inhibitor of Notch signaling. Taken together, our results indicate that emerin negatively regulates Notch signaling by promoting the retention of the NICD at the nuclear membrane. This mechanism could constitute a new therapeutic target for the treatment of emerin-related diseases.


Frontiers in Cellular Neuroscience | 2014

CIIA prevents SOD1(G93A)-induced cytotoxicity by blocking ASK1-mediated signaling

Jae Keun Lee; Sang Gil Hwang; Jin Hee Shin; Jaekyung Shim; Eui Ju Choi

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease with higher selectivity in degeneration of motor neurons. However, the molecular mechanism by which the ALS-linked mutants of human superoxide dismutase 1 (SOD1) gene induce neurotoxicity remains obscure yet. Here, we show that depletion of CIIA expression by RNA interference (RNAi) promoted cytotoxicity caused by ALS-linked G93A mutant of the SOD1 gene. The RNAi-mediated knockdown of CIIA also enhanced the SOD1(G93A)-induced interaction between ASK1 and TRAF2 as well as ASK1 activity. Furthermore, endogenous silencing of CIIA by RNAi augmented the effects of SOD1(G93A) on reduction of mitochondria membrane potential (Δψm), release of cytochrome c into the cytoplasm, and caspase activation. Together, our results suggest that CIIA negatively modulates ASK1-mediated cytotoxic signaling processes in a SOD1(G93A)-expressing cellular model of ALS.


Molecular and Cellular Biochemistry | 2014

CIIA negatively regulates neuronal cell death induced by oxygen–glucose deprivation and reoxygenation

Sang Gil Hwang; Jaekyung Shim; Eui Ju Choi

Brain ischemia causes neuronal injury leading to stroke and other related brain diseases. However, the precise mechanism of the ischemia-induced neuronal death remains unclear yet. In this study, we showed that CIIA suppressed neuronal cell death induced by oxygen and glucose deprivation followed by reoxygenation (OGD/R), which mimics ischemia and reperfusion in vivo, in neuroblastoma cell lines as well as primary cortical neurons. Furthermore, CIIA inhibited the OGD/R-induced stimulation of apoptosis signal-regulating kinase 1 (ASK1) and its downstream kinases including c-Jun amino-terminal kinase and p38 kinase, concomitantly blocking ASK1 homo-oligomerization and the binding between ASK1 and TRAF2. CIIA also repressed the OGD/R-induced activation of caspase-3 in neuronal cells. Taken together, our results suggest that CIIA attenuates neurotoxicity caused by OGD/R through inhibiting ASK1-dependent signaling events.

Collaboration


Dive into the Jaekyung Shim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge