Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaewoon Jung is active.

Publication


Featured researches published by Jaewoon Jung.


Wiley Interdisciplinary Reviews: Computational Molecular Science | 2015

GENESIS: a hybrid‐parallel and multi‐scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations

Jaewoon Jung; Takaharu Mori; Chigusa Kobayashi; Yasuhiro Matsunaga; Takao Yoda; Michael Feig; Yuji Sugita

GENESIS (Generalized‐Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all‐atom force‐field models as well as coarse‐grained Go‐like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large‐scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T‐REMD, REUS, multi‐dimensional REMD for both all‐atom and Go‐like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three‐dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real‐space and reciprocal‐space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310–323. doi: 10.1002/wcms.1220


eLife | 2016

Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm

Isseki Yu; Takaharu Mori; Tadashi Ando; Ryuhei Harada; Jaewoon Jung; Yuji Sugita; Michael Feig

Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology. DOI: http://dx.doi.org/10.7554/eLife.19274.001


Molecular Physics | 2010

Assessment of free energy expressions in RISM integral equation theory: theoretical prediction of partition coefficients revisited

Seiichiro Ten-no; Jaewoon Jung; Hiroshi Chuman; Yukio Kawashima

We assess the performance of free energy expressions so far available in the reference interaction site model (RISM) integral equation theory. Free energies of solvation in aqueous and chloroform solutions along with the partition coefficients of them are calculated for 16 organic molecules. Static polarity effects are included using hybrid RISM and Hartree–Fock methods. Our best estimates are obtained from the expression of the distributed partial wave expansion that leads to the standard deviations less than 1.3 kcal mol−1 and 1.1 in the solvation free energies and partition coefficients, respectively.


Journal of Chemical Physics | 2007

New implementation of a combined quantum mechanical and molecular mechanical method using modified generalized hybrid orbitals

Jaewoon Jung; Cheol Ho Choi; Yuji Sugita; Seiichiro Ten-no

Two new techniques are introduced in the generalized hybrid orbital (GHO) method [Pu et al., J. Phys. Chem. A 108, 632 (2004)] and tested on small molecules. The first is a way to determine occupation numbers dependent on the molecular mechanical (MM) atoms linked to the boundary. The method takes account of the inhomogeneity in the occupation numbers of the auxiliary orbitals from different types of MM atoms in such a way that the formal charge condition is fulfilled. The second technique is a rigorous orthogonalization procedure of auxiliary orbitals for more than two boundary atoms. It is shown that the new implementation widens the realm of the GHO method with flexible quantum mechanical/MM partitionings.


Journal of Chemical Theory and Computation | 2013

Surface-Tension Replica-Exchange Molecular Dynamics Method for Enhanced Sampling of Biological Membrane Systems

T. Mori; Jaewoon Jung; Yuji Sugita

Conformational sampling is fundamentally important for simulating complex biomolecular systems. The generalized-ensemble algorithm, especially the temperature replica-exchange molecular dynamics method (T-REMD), is one of the most powerful methods to explore structures of biomolecules such as proteins, nucleic acids, carbohydrates, and also of lipid membranes. T-REMD simulations have focused on soluble proteins rather than membrane proteins or lipid bilayers, because explicit membranes do not keep their structural integrity at high temperature. Here, we propose a new generalized-ensemble algorithm for membrane systems, which we call the surface-tension REMD method. Each replica is simulated in the NPγT ensemble, and surface tensions in a pair of replicas are exchanged at certain intervals to enhance conformational sampling of the target membrane system. We test the method on two biological membrane systems: a fully hydrated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine) lipid bilayer and a WALP23-POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane system. During these simulations, a random walk in surface tension space is realized. Large-scale lateral deformation (shrinking and stretching) of the membranes takes place in all of the replicas without collapse of the lipid bilayer structure. There is accelerated lateral diffusion of DPPC lipid molecules compared with conventional MD simulation, and a much wider range of tilt angle of the WALP23 peptide is sampled due to large deformation of the POPC lipid bilayer and through peptide-lipid interactions. Our method could be applicable to a wide variety of biological membrane systems.


Proteins | 2004

Topological determinants of protein unfolding rates

Jaewoon Jung; Jooyoung Lee; Hie-Tae Moon

For proteins that fold by two‐state kinetics, the folding and unfolding processes are believed to be closely related to their native structures. In particular, folding and unfolding rates are influenced by the native structures of proteins. Thus, we focus on finding important topological quantities from a protein structure that determine its unfolding rate. After constructing graphs from protein native structures, we investigate the relationships between unfolding rates and various topological quantities of the graphs. First, we find that the correlation between the unfolding rate and the contact order is not as prominent as in the case of the folding rate and the contact order. Next, we investigate the correlation between the unfolding rate and the clustering coefficient of the graph of a protein native structure, and observe no correlation between them. Finally, we find that a newly introduced quantity, the impact of edge removal per residue, has a good overall correlation with protein unfolding rates. The impact of edge removal is defined as the ratio of the change of the average path length to the edge removal probability. From these facts, we conclude that the protein unfolding process is closely related to the protein native structure. Proteins 2005.


Journal of Computational Chemistry | 2013

Efficient lookup table using a linear function of inverse distance squared.

Jaewoon Jung; Takaharu Mori; Yuji Sugita

The major bottleneck in molecular dynamics (MD) simulations of biomolecules exist in the calculation of pairwise nonbonded interactions like Lennard‐Jones and long‐range electrostatic interactions. Particle‐mesh Ewald (PME) method is able to evaluate long‐range electrostatic interactions accurately and quickly during MD simulation. However, the evaluation of energy and gradient includes time‐consuming inverse square roots and complementary error functions. To avoid such time‐consuming operations while keeping accuracy, we propose a new lookup table for short‐range interaction in PME by defining energy and gradient as a linear function of inverse distance squared. In our lookup table approach, densities of table points are inversely proportional to squared pair distances, enabling accurate evaluation of energy and gradient at small pair distances. Regardless of the inverse operation here, the new lookup table scheme allows fast pairwise nonbonded calculations owing to efficient usage of cache memory.


Journal of Physical Chemistry Letters | 2016

Dimensionality of Collective Variables for Describing Conformational Changes of a Multi-Domain Protein.

Yasuhiro Matsunaga; Yasuaki Komuro; Chigusa Kobayashi; Jaewoon Jung; T. Mori; Yuji Sugita

Collective variables (CVs) are often used in molecular dynamics simulations based on enhanced sampling algorithms to investigate large conformational changes of a protein. The choice of CVs in these simulations is essential because it affects simulation results and impacts the free-energy profile, the minimum free-energy pathway (MFEP), and the transition-state structure. Here we examine how many CVs are required to capture the correct transition-state structure during the open-to-close motion of adenylate kinase using a coarse-grained model in the mean forces string method to search the MFEP. Various numbers of large amplitude principal components are tested as CVs in the simulations. The incorporation of local coordinates into CVs, which is possible in higher dimensional CV spaces, is important for capturing a reliable MFEP. The Bayesian measure proposed by Best and Hummer is sensitive to the choice of CVs, showing sharp peaks when the transition-state structure is captured. We thus evaluate the required number of CVs needed in enhanced sampling simulations for describing protein conformational changes.


Journal of Computational Chemistry | 2014

Midpoint cell method for hybrid (MPI+OpenMP) parallelization of molecular dynamics simulations

Jaewoon Jung; Takaharu Mori; Yuji Sugita

We have developed a new hybrid (MPI+OpenMP) parallelization scheme for molecular dynamics (MD) simulations by combining a cell‐wise version of the midpoint method with pair‐wise Verlet lists. In this scheme, which we call the midpoint cell method, simulation space is divided into subdomains, each of which is assigned to a MPI processor. Each subdomain is further divided into small cells. The interaction between two particles existing in different cells is computed in the subdomain containing the midpoint cell of the two cells where the particles reside. In each MPI processor, cell pairs are distributed over OpenMP threads for shared memory parallelization. The midpoint cell method keeps the advantages of the original midpoint method, while filtering out unnecessary calculations of midpoint checking for all the particle pairs by single midpoint cell determination prior to MD simulations. Distributing cell pairs over OpenMP threads allows for more efficient shared memory parallelization compared with distributing atom indices over threads. Furthermore, cell grouping of particle data makes better memory access, reducing the number of cache misses. The parallel performance of the midpoint cell method on the K computer showed scalability up to 512 and 32,768 cores for systems of 20,000 and 1 million atoms, respectively. One MD time step for long‐range interactions could be calculated within 4.5 ms even for a 1 million atoms system with particle‐mesh Ewald electrostatics.


Journal of Computational Chemistry | 2017

GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms

Chigusa Kobayashi; Jaewoon Jung; Yasuhiro Matsunaga; T. Mori; Tadashi Ando; Koichi Tamura; Motoshi Kamiya; Yuji Sugita

GENeralized‐Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all‐atom and coarse‐grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time‐step integration, and hybrid (CPU + GPU) computing. The string method and replica‐exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free‐energy pathway and obtaining free‐energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research.

Collaboration


Dive into the Jaewoon Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Feig

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadashi Ando

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge