Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jagadeesh S. Rao is active.

Publication


Featured researches published by Jagadeesh S. Rao.


Molecular Psychiatry | 2010

Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients

Jagadeesh S. Rao; G J Harry; Stanley I. Rapoport; Kim Hw

Reports of cognitive decline, symptom worsening and brain atrophy in bipolar disorder (BD) suggest that the disease progresses over time. The worsening neuropathology may involve excitotoxicity and neuroinflammation. We determined protein and mRNA levels of excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. The brain tissue was matched for age, postmortem interval and pH. The results indicated statistically significant lower protein and mRNA levels of the N-methyl-D-aspartate receptors, NR-1 and NR-3A, but significantly higher protein and mRNA levels of interleukin (IL)-1β, the IL-1 receptor (IL-1R), myeloid differentiation factor 88, nuclear factor-kappa B subunits, and astroglial and microglial markers (glial fibrillary acidic protein, inducible nitric oxide synthase, c-fos and CD11b) in postmortem frontal cortex from BD compared with control subjects. There was no significant difference in mRNA levels of tumor necrosis factor alpha or neuronal nitric oxide synthase in the same region. These data show the presence of excitotoxicity and neuroinflammation in BD frontal cortex, with particular activation of the IL-R cascade. The changes may account for reported evidence of disease progression in BD and be a target for future therapy.


Molecular Psychiatry | 2007

n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism.

Jagadeesh S. Rao; Ertley Rn; Lee Hj; DeMar Jc; Arnold Jt; Stanley I. Rapoport; Richard P. Bazinet

Decreased docosahexaenoic acid (DHA) and brain-derived neurotrophic factor (BDNF) have been implicated in bipolar disorder. It also has been reported that dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) for 15 weeks in rats, increased their depression and aggression scores. Here, we show that n-3 PUFA deprivation for 15 weeks decreased the frontal cortex DHA level and reduced frontal cortex BDNF expression, cAMP response element binding protein (CREB) transcription factor activity and p38 mitogen-activated protein kinase (MAPK) activity. Activities of other CREB activating protein kinases were not significantly changed. The addition of DHA to rat primary cortical astrocytes in vitro, induced BDNF protein expression and this was blocked by a p38 MAPK inhibitor. DHAs ability to regulate BDNF via a p38 MAPK-dependent mechanism may contribute to its therapeutic efficacy in brain diseases having disordered cell survival and neuroplasticity.


Molecular Psychiatry | 2007

Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex

Jagadeesh S. Rao; Ertley Rn; DeMar Jc; Stanley I. Rapoport; Richard P. Bazinet; Lee Hj

The enzymes that regulate the brain arachidonic acid (AA) cascade have been implicated in bipolar disorder and neuroinflammation. Fifteen weeks of dietary n-3 polyunsaturated fatty acid (PUFA) deprivation in rats decreases the concentration of docosahexaenoic acid (DHA) and increases its half-life within the brain. Based on this, we hypothesized that such dietary deprivation would decrease expression of enzymes responsible for the metabolic loss of DHA while increasing expression of those responsible for the metabolism of AA. Fifteen weeks of n-3 PUFA deprivation significantly decreased the activity, protein and mRNA expression of the DHA regulatory phospholipase A2 (PLA2), calcium-independent iPLA2, in rat frontal cortex. In contrast the activities, protein and mRNA levels of the AA selective calcium-dependent cytosolic phospholipase (cPLA2) and secretory sPLA2 were increased. Cyclooxygenase (COX)-1 protein but not mRNA was decreased in the n-3 PUFA-deprived rats whereas COX-2 protein and mRNA were increased. This study suggests that n-3 PUFA deprivation increases the half-live of brain DHA by downregulating iPLA2. The finding that n-3 PUFA deprivation increases cPLA2, sPLA2 and COX-2 is opposite to what has been reported after chronic administration of anti-manic agents to rats and suggests that n-3 PUFA deprivation may increase susceptibility to bipolar disorder.


Neurobiology of Disease | 2010

Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients.

Hyung-Wook Kim; Stanley I. Rapoport; Jagadeesh S. Rao

Bipolar disorder (BD) is a progressive psychiatric disorder characterized by recurrent changes of mood and is associated with cognitive decline. There is evidence of excitotoxicity, neuroinflammation, upregulated arachidonic acid (AA) cascade signaling and brain atrophy in BD patients. These observations suggest that BD pathology may be associated with apoptosis as well as with disturbed synaptic function. To test this hypothesis, we measured mRNA and protein levels of the pro-apoptotic (Bax, BAD, caspase-9 and caspase-3) and anti-apoptotic factors (BDNF and Bcl-2) and of pre- and post-synaptic markers (synaptophysin and drebrin), in postmortem prefrontal cortex (Brodmann area 9) from 10 BD patients and 10 age-matched controls. Consistent with the hypothesis, BD brains showed significant increases in protein and mRNA levels of the pro-apoptotic factors and significant decreases of levels of the anti-apoptotic factors and the synaptic markers, synaptophysin and drebrin. These differences may contribute to brain atrophy and progressive cognitive changes in BD.


Journal of Affective Disorders | 2012

Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients

Jagadeesh S. Rao; Matthew Kellom; Edmund Arthur Reese; Stanley I. Rapoport; Hyung-Wook Kim

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of The National Institutes of Health has found that the first author, Dr. Jagadeesh S. Rao engaged in research misconduct by falsifying data in “Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients”. Rao JS, Kellom M, Reese EA, Rapoport SI, Kim HW. J. Affect Disord. 136(1–2):63–71. 2012. Data in Figures 2A, 2B, 3A, 3B and 4A were falsified.


Neurochemical Research | 2012

Neuroinflammation and Synaptic Loss

Jagadeesh S. Rao; Matthew Kellom; Hyung-Wook Kim; Stanley I. Rapoport; Edmund Arthur Reese

Neuroinflammation plays a critical role in the progression of many neurodegenerative, neuropsychiatric and viral diseases. In neuroinflammation, activated microglia and astrocytes release cytokines and chemokines as well as nitric oxide, which in turn activate many signal transduction pathways. The cytokines, interleukin-1 beta and tumor necrosis factor alpha, regulate transcription of a number of genes within the brain, which can lead to the formation of pro-inflammatory products of the arachidonic acid cascade. Formation of pro-inflammatory agents and associated cytotoxic products during neuroinflammation can be detrimental to neurons by altering synaptic proteins. Neuroinflammation as well as excitotoxic insults reduce synaptic markers such as synaptophysin and drebrin. Neurodegenerative, neuropsychiatric illnesses and viral infections are accompanied by loss of both pre- and post-synaptic proteins. These synaptic changes may contribute to the progressive cognitive decline and behavioral changes associated with these illnesses.


Biological Psychiatry | 2006

Chronic Carbamazepine Decreases the Incorporation Rate and Turnover of Arachidonic Acid but Not Docosahexaenoic Acid in Brain Phospholipids of the Unanesthetized Rat: Relevance to Bipolar Disorder

Richard P. Bazinet; Jagadeesh S. Rao; Lisa Chang; Stanley I. Rapoport; Ho-Joo Lee

BACKGROUND The basis for carbamazepines efficacy in treating bipolar disorder is not agreed on. One hypothesis is that, similar to lithium and valproate (antibipolar drugs), carbamazepine might selectively decrease the kinetics of arachidonic acid (AA) in brain phospholipids. METHODS To assess whether it targets brain AA kinetics, we administered carbamazepine (25 mg/kg/day, IP) to rats for 30 days and then determined its effect compared with that of vehicle on incorporation and turnover rates of AA and docosahexaenoic acid (DHA) in brain phospholipids. In unanesthetized rats that had received carbamazepine or vehicle, [1-14C]AA or [1-14C]DHA was infused intravenously, and arterial blood plasma was sampled until the animal was killed at 5 min and its brain, after being microwaved, was used for acyl-coenzyme A (acyl-CoA) and phospholipid fatty acid analysis. RESULTS Chronic carbamazepine, compared with vehicle, decreased the rate of incorporation of AA-CoA (27%-29%) and turnover of AA (25%-27%) but not of DHA-CoA or DHA in brain phospholipids. CONCLUSIONS The results, which are comparable to published findings after chronic administration of lithium and valproic acid to rats, support the hypothesis that drugs effective against mania in bipolar disorder act by selectively downregulating the incorporation rate of AA-CoA and turnover of AA in brain phospholipids.


Molecular Psychiatry | 2008

Mode of action of mood stabilizers: is the arachidonic acid cascade a common target?

Jagadeesh S. Rao; Lee Hj; Stanley I. Rapoport; Richard P. Bazinet

Bipolar disorder is a major medical, social and economic burden worldwide. However, the mechanisms of action of effective antibipolar disorder drugs remain elusive. In this paper, we review studies using a neuropharmacological approach in unanesthetized rats, combined with kinetic, biochemical and molecular biology techniques, showing that chronic administration of three Food and Drug Administration-approved mood stabilizers (lithium, valproate and carbamazepine) at therapeutically relevant doses, selectively target the brain arachidonic acid (AA) cascade. Whereas chronic lithium and carbamazepine decrease the binding activity of activator protein-2 and in turn the transcription, translation and activity of its AA-selective calcium-dependent phospholipase A2 gene product, valproate appears to be a non-competitive inhibitor of long-chain acyl-CoA synthetase. The net overlapping effects of the three drugs are decreased turnover of AA but not of docosahexaenoic acid in rat brain phospholipids, and decreased brain cyclooxygenase-2 and prostaglandin E2. Although these observations support the hypothesis proposed by Rapoport and colleagues that the AA cascade is a common target of mood stabilizers, this hypothesis is not necessarily exclusive of other targets. Targeting the AA cascade with drugs or diet may be a useful therapeutic approach in bipolar disorder, and examining the AA cascade in patients might help in better understanding the disease.


Schizophrenia Research | 2013

Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients

Jagadeesh S. Rao; Hyung-Wook Kim; Harry Gj; Stanley I. Rapoport; Edmund Arthur Reese

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editors. The National Institutes of Health has found that Dr. Jagadeesh S. Rao engaged in research misconduct by falsifying data. Data in Figures 1A, 1E, 3E and 3F were falsified. Dr. Rao was solely responsible for the falsification. None of the other authors are implicated in any way.


Journal of Alzheimer's Disease | 2011

Disturbed Neurotransmitter Transporter Expression in Alzheimer’s Disease Brain

Kevin H. Chen; Edmund Arthur Reese; Hyung-Wook Kim; Stanley I. Rapoport; Jagadeesh S. Rao

Alzheimers disease (AD) is a neurodegenerative disorder characterized by memory loss and behavioral and psychological symptoms of dementia. An imbalance of different neurotransmitters--glutamate, acetylcholine, dopamine, and serotonin--has been proposed as the neurobiological basis of behavioral symptoms in AD. The molecular changes associated with neurotransmission imbalance in AD are not clear. We hypothesized that altered reuptake of neurotransmitters by vesicular glutamate transporters (VGLUTs), excitatory amino acid transporters (EAATs), the vesicular acetylcholine transporter (VAChT), the serotonin reuptake transporter (SERT), or the dopamine reuptake transporter (DAT) are involved in the neurotransmission imbalance in AD. We tested this hypothesis by examining protein and mRNA levels of these transporters in postmortem prefrontal cortex from 10 AD patients and 10 matched non-AD controls. Compared with controls, protein and mRNA levels of VGLUTs, EAAT1-3, VAChT, and SERT were reduced significantly in AD. Expression of DAT and catechol O-methyltransferase was unchanged. Reduced VGLUTs and EAATs may contribute to an alteration in glutamatergic recycling, and reduced SERT could exacerbate depressive symptoms in AD. The reduced VAChT expression could contribute to the recognized cholinergic deficit in AD. Altered neurotransmitter transporters could contribute to the pathophysiology of AD and are potential targets for therapy.

Collaboration


Dive into the Jagadeesh S. Rao's collaboration.

Top Co-Authors

Avatar

Stanley I. Rapoport

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hyung-Wook Kim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ho-Joo Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lisa Chang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard P. Bazinet

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Edmund Arthur Reese

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Miki Igarashi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew Kellom

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yewon Cheon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hiren R. Modi

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge