Jagannath Jana
Bose Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jagannath Jana.
ChemMedChem | 2014
Anirban Ghosh; Rajiv Kumar Kar; Jagannath Jana; Abhijit Saha; Batakrishna Jana; Janarthanan Krishnamoorthy; Dinesh Kumar; Surajit Ghosh; Subhrangsu Chatterjee; Anirban Bhunia
Indolicidin (IR13), a 13‐residue antimicrobial peptide from the cathelicidin family, is known to exhibit a broad spectrum of antimicrobial activity against various microorganisms. This peptide inhibits bacterial DNA synthesis resulting in cell filamentation. However, the precise mechanism remains unclear and requires further investigation. The central PWWP motif of IR13 provides a unique structural element that can wrap around, and thus stabilize, duplex B‐type DNA structures. Replacements of the central Trp‐Trp pair with Ala‐Ala, His‐His, or Phe‐Phe residues in the PxxP motif significantly affects the ability of the peptide to stabilize duplex DNA. Results of microscopy studies in conjunction with spectroscopic data confirm that the DNA duplex is stabilized by IR13, thereby inhibiting DNA replication and transcription. In this study we provide high‐resolution structural information on the interaction between indolicidin and DNA, which will be beneficial for the design of novel therapeutic antibiotics based on peptide scaffolds.
Nutrition and Cancer | 2014
Samarjit Jana; Kartick Patra; Shehnaz Sarkar; Jagannath Jana; Gopeswar Mukherjee; Shamee Bhattacharjee; Deba Prasad Mandal
Coriander, used as a common food seasoning, contains linalool as the main constituent of its essential oil. In this study, we tested the effect of linalool vis-à-vis that of a conventional chemotherapeutic drug, cyclophosphamide, against solid S-180 tumor-bearing Swiss albino mice. Tumor volume, cell count, cell cycle phase distribution, apoptosis, and proliferation markers indicate that linalool has potent antitumor activity. In vitro and in vivo data suggest that induction of oxidative stress might be responsible for the anticancer effect of linalool. However, interestingly, unlike cyclophosphamide, linalool did not induce myelosuppression or hepatotoxicity in mice as evident from bone marrow cell count, status of hepatic oxidative stress/antioxidant enzymes, and histopathology. Thus, linalool exerted prooxidant effect in tumor tissue and an antioxidant effect in liver. This is also supported by the expression of Nrf-2 and p21, which are considered to be important players in response to oxidative stress. Moreover, administration of linalool modulated the proliferation of spleen cells in tumor-bearing mice challenged with lipopolysaccharide. Finally, the detection of linalool in sera and tumor tissues by HPLC confirmed its bioavailability. In conclusion, linalool showed differential cytotoxicity towards tumor and normal cells in contrast to cyclophosphamide, which is uniformly toxic to both.
Biochemistry | 2015
Saptaparni Ghosh; Jagannath Jana; Rajiv Kumar Kar; Subhrangsu Chatterjee; Dipak Dasgupta
Small molecules that interact with G-quadruplex structures formed by the human telomeric region and stabilize them have the potential to evolve as anticancer therapeutic agents. Herein we report the interaction of a putative anticancer agent from a plant source, chelerythrine, with the human telomeric DNA sequence. It has telomerase inhibitory potential as demonstrated from telomerase repeat amplification assay in cancer cell line extract. We have attributed this to the quadruplex binding potential of the molecule and characterized the molecular details of the interaction by means of optical spectroscopy such as absorbance and circular dichroism and calorimetric techniques such as isothermal titration calorimetry and differential scanning calorimetry. The results show that chelerythrine binds with micromolar dissociation constant and 2:1 binding stoichiometry to the human telomeric DNA sequence. Chelerythrine association stabilizes the G-quadruplex. Nuclear magnetic resonance spectroscopy ((1)H and (31)P) shows that chelerythrine binds to both G-quartet and phosphate backbone of the quadruplex leading to quadruplex aggregation. Molecular dynamics simulation studies support the above inferences and provide further insight into the mechanism of ligand binding. The specificity toward quartet binding for chelerythrine is higher compared to that of groove binding. MM-PBSA calculation mines out the energy penalty for quartet binding to be -4.7 kcal/mol, whereas that of the groove binding is -1.7 kcal/mol. We propose that the first chelerythrine molecule binds to the quartet followed by a second molecule which binds to the groove. This second molecule might bring about aggregation of the quadruplex structure which is evident from the results of nuclear magnetic resonance.
Journal of Biomolecular Structure & Dynamics | 2013
Rajiv Kumar Kar; Priyanka Suryadevara; Jagannath Jana; Anirban Bhunia; Subhrangsu Chatterjee
The stabilization of overhang G-rich repetitive DNA units at the 3′-end of telomeres, which are well known to form functionally important G-quadruplex structures, is a current goal in designing novel anticancer drugs. In the present study, we have undertaken an in silico approach by molecular docking using a small molecule library to find potential G-quadruplex stabilizing agents. Two molecules, A, [N′1-imino(2-pyridyl)methyl-3,4,5-trimethoxybenzene-1-carbohydrazide] and B, [(3-[4-({[3-({4-[(2cyanoethyl)(methyl)amino]benzylidene}amino)propyl]imino}methyl)(methyl) anilino]propanenitrile)], that had good docking scores have been investigated for interaction with G-quadruplexes in a Molecular Dynamics simulation study. Fluorescence spectroscopy of G-quadruplexes bound to the screened molecules A and B was used to experimentally validate the theoretical results. The binding of ligands A and B to G-quadruplexes resulted in blue shifts of 10–18 nm, respectively, in the fluorescence emission spectra of the G-quadruplexes, demonstrating that both molecules bind to the G-face of the quadruplex. The same experiment was performed for the complexation of these small molecules with a G-rich DNA duplex, . Interestingly, no blue shift was observed in the fluorescence emission spectra of the DNA duplex in the presence of these small molecules. Thus, these findings indicated that these ligands very selectively bind to G-quadruplexes instead of the duplex DNA. In addition, a one-dimensional water ligand observed via a gradient spectroscopy Nuclear Magnetic Resonance (NMR) experiment showed that both molecules bound to the 23-mer G-quadruplex DNA. The molecular properties of the ligand–quadruplex complex have been analyzed with the help of the Adaptive Poisson-Boltzmann Solver, revealing that electrostatics govern the binding of the small molecules to G-quadruplexes. Both molecules were investigated in detail using solvation free energy calculations and Absorption, Distribution, Metabolism, Elimination and Toxicity (ADMET) predictions, which provide insight into lead optimization for designing G-quadruplex stabilizing agents; therefore, these molecules have potential as new therapeutic agents.
Scientific Reports | 2017
Jagannath Jana; Soma Mondal; Payel Bhattacharjee; Pallabi Sengupta; Tanaya Roychowdhury; Pranay Saha; Pallob Kundu; Subhrangsu Chatterjee
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.
Journal of the American Chemical Society | 2017
Debmalya Bhunia; Prasenjit Mondal; Gaurav Das; Abhijit Saha; Pallabi Sengupta; Jagannath Jana; Saswat Mohapatra; Subhrangsu Chatterjee; Surajit Ghosh
Identification of key amino acids is required for development of efficient cell-penetrating peptides (CPPs) and has tremendous implications in medicine. Extensive research work has enlightened us about the importance of two amino acids, arginine and tryptophan, in cell penetration. Here, we present a top-down approach to show how spatial positions of two tryptophans regulate the cellular entry and nuclear localization. This enables us to develop short, non-toxic tetrapeptides with excellent potential for cell penetration and nuclear localization. Among them, Glu-Thr-Trp-Trp (ETWW) emerges as the most promising. Results suggest that it enters into cancer cells following an endocytic pathway and binds at the major groove of nuclear DNA, where successive tryptophan plays major role. We subsequently show that it is not a P-glycoprotein substrate and is non-toxic to PC12-derived neurons, suggesting its excellent potential as a CPP. Furthermore, its potential as a CPP is validated in multi-cellular 3D cell culture (spheroid) and in in vivo mice model. This study provides major fundamental insights about the positional importance of tryptophan and opens new avenues toward the development of next-generation CPPs and major-groove-specific anticancer drugs.
Toxicology reports | 2014
Syed Benazir Firdaus; Debosree Ghosh; Aindrila Chattyopadhyay; Mousumi Dutta; Sudeshna Paul; Jagannath Jana; Anjali Basu; Gargi Bose; Hiya Lahiri; Bhaswati Banerjee; Sanjib K. Pattari; Subhrangshu Chatterjee; Kuladip Jana; Debasish Bandyopadhyay
Graphical abstract
RSC Advances | 2017
Jagannath Jana; Pallabi Sengupta; Soma Mondal; Subhrangsu Chatterjee
The stabilization of a G-quadruplex structure in human telomeric DNA has become a promising strategy in the development of cancer therapeutics. Here, we report FK13 (a small fragment of human cathelicidin peptide LL37, residues 17–29) and its mutant peptides (KR12A, KR12B and KR12C) inhibiting telomerase activity by stabilizing the telomeric G-quadruplex structures. An array of biophysical studies like fluorescence anisotropy, circular dichroism spectroscopy, circular dichroism melting, isothermal titration calorimetry, and high resolution nuclear magnetic resonance spectroscopy, in conjunction with molecular dynamics simulations, are employed to examine the interaction of peptides with the G-quadruplex structure. Furthermore, the peptide-quadruplex interaction is monitored in ex vivo systems, the telomerase over-expressed MCF7 breast adeno-carcinoma cell line. MTT assay and flow cytometry studies indicate selective antiproliferative activities of the peptides towards cancer cells over normal kidney epithelial cell line. Confocal microscopy evidenced nuclear transport and localisation of the peptides. A telomerase repeat amplification protocol assay further evidences telomere uncapping and abrogation of telomerase catalysing activity upon administration of peptides. Hence, arresting G-quadruplex structures using short peptides brings in a new mechanistic insight for the development of future peptide based therapeutics against cancer.
ChemistryOpen | 2018
Meghomukta Mukherjee; Jagannath Jana; Subhrangsu Chatterjee
Abstract Protein misfolding is interrelated to several diseases, including neurodegenerative diseases and type II diabetes. Misfolded/unfolded proteins produce soluble oligomers that accumulate into “amyloid plaques”. Inhibition of amyloid‐plaque formation by those misfolded/unfolded proteins will lead to the invention of new therapeutic approaches for amyloid‐related diseases. Herein, methylene blue (MB), a well‐defined drug against multiple diseases and disorders, is used to impede insulin fibrillation. In this study, we perform an array of in vitro experiments to monitor the effects of MB on the fibrillation of bovine insulin. Our results confirm that MB distresses the kinetics of insulin fibrillation by interacting with insulin in its monomeric form. A thioflavin T assay indicates that insulin fibrillation is interrupted upon the addition of MB. The same results are confirmed by circular dichroism, dynamic light scattering (DLS), and size‐exclusion chromatography (SEC). According to the DLS data, the insulin fibrils are 800 nm in diameter, and the addition of MB reduces the size of the fibrils, which remain 23 nm in size, and this indicates that no fibrillation of insulin occurs in the presence of MB. This data is also supported by SEC. Saturation transfer difference NMR spectroscopy and molecular dynamics simulations demonstrate the interactions between insulin and MB at the atomic level.
Chemico-Biological Interactions | 2018
Samarjit Jana; Kartick Patra; Jagannath Jana; Deba Prasad Mandal; Shamee Bhattacharjee
Cancer cells possess elevated ROS coupled with increased levels of antioxidant enzymes which render them resistant against cytotoxic chemotherapies. Therefore, an understanding of the interaction between key molecules involved in stress adaptive mechanisms is important to innovate strategies against cancer cell chemoresistance. Here, the lung adenocarcinoma cell line A549 with constitutively expressed Nrf2 was found to be more tolerant to H2O2 (0.1, 0.2, 0.5 and 1 mM) than normal lung cell line L132 or p53 null lung cancer cell line H1299. Maximum cytoprotection was observed at 0.2 mM H2O2 accompanied by a significant increase in p21, Nrf2 and antioxidant enzymes in A549 cells. The increased p21 expression was independent of p53 but dependent on Nrf2 as evident from qPCR, Western blotting and dual luciferase assays after silencing Nrf-2 and p53 genes. Highly conserved Nrf-2 binding sites were identified in p21 promoter by bioinformatics and homology modeling which was further confirmed by ChIP and reporter assay.